
A scalable deadlock detection algorithm for UPC collective operations

Indranil Roy, Glenn R. Luecke, James Coyle, and Marina Kraeva
Iowa State University’s High Performance Computing Group, Iowa State University,

Ames, Iowa 50011, USA
Email: iroy@iastate.edu, grl@iastate.edu, jjc@iastate.edu, kraeva@iastate.edu.

Abstract—Unified Parallel C (UPC) is a language used to
write parallel programs for shared and distributed memory
parallel computers. Deadlock detection in UPC programs
requires detecting deadlocks that involve either locks, collective
operations, or both. In this paper, a distributed deadlock detec-
tion algorithm for UPC programs that uses run-time analysis
is presented. The algorithm detects deadlocks in collective
operations using a distributed technique with O(1) run-time
complexity. The correctness and optimality of the algorithm
is proven. For completeness, the algorithm is extended to
detect deadlocks involving both locks and collective operations
by identifying insolvable dependency chains and cycles in a
shared wait-for-graph (WFG). The algorithm is implemented
in the run-time error detection tool UPC-CHECK and tested
with over 150 functionality test cases. The scalability of this
deadlock detection algorithm for UPC collective operations is
experimentally verified using up to 8192 threads.

Keywords-deadlock, collective, verification, Partitioned
Global Address Space (PGAS), Unified Parallel C(UPC).

I. INTRODUCTION

Unified Parallel C (UPC) [1], [2] is an extension of the
C programming language for parallel execution on shared
and distributed memory parallel machines. UPC uses the
Partitioned Global Address Space (PGAS) [3] parallel pro-
gramming model where shared variables may be directly
read and written by any thread.

Deadlocks in complex application programs are often
difficult to locate and fix. Currently UPC-CHECK [4] and
UPC-SPIN [5] are the only tools available for the detec-
tion of deadlocks in UPC programs. UPC-SPIN employs
a model-checking method which inherently does not scale
beyond a few threads. In addition, every time the program
is modified, the model has to be updated. In contrast,
UPC-CHECK uses the algorithm presented in this paper
to automatically detect deadlocks at run-time for programs
executing on thousands of threads.

This new algorithm not only detects deadlocks involving
UPC collective operations, but also verifies the arguments
passed to the collective operation for consistency. The run-
time complexity of this algorithm is shown to be O(1). The
algorithm has been extended to detect deadlocks involving
both collective operations and locks. The run-time complex-
ity of the extended algorithm is O(T ), where T is the number
of threads. Using this deadlock detection algorithm UPC-
CHECK detects all deadlock error test cases from the UPC

RTED test suite [6].
The rest of this paper is organized as follows. Sec-

tion II provides the background of various existing deadlock
detection techniques. In Section III, a new algorithm to
detect potential deadlocks due to incorrect usage of UPC
collective operations is presented. The correctness and run-
time complexity analysis of the algorithm are also provided.
Section IV describes the extended algorithm to detect dead-
locks involving both locks and collective operations. The
scalability of this deadlock detection algorithm is experimen-
tally confirmed in Section V. Finally, Section VI contains
the concluding remarks.

II. BACKGROUND

Out-of-order calls to collective operations on different
threads may create a deadlock. Even when the calls to
collective operations are in-order, various non-local seman-
tics dictate that consistent arguments need to be used in
all participating threads. Non-adherence to these semantics
could lead to a deadlock or departure from intended behavior
of the program. However, building scalable tools to detect
such errors remains a challenge. Träff et al. [7] provided the
first verification tool for NEC MPI which used profiling to
provide limited non-local checks for parameters like unique
root thread, operators, length of data etc. Falzone et al. [8]
extended these checks to detect errors in datatype signature
of parameters using the “datatype signature hashing” mech-
anism devised by Gropp [9].

Model-checking tools like MPI-SPIN [10] and UPC-
SPIN [5] can detect all possible deadlock conditions aris-
ing from all combination of parameters in all possible
control-flows. However, such tools cannot scale beyond a
few threads due to the combinatorial state-space explosion.
Tools employing dynamic formal verification methods do
not check all the control flows and hence can be used for
larger programs. Such tools ISP [11], MODIST [12] and
POE [13] generally employ centralized deadlock detection
schemes which limit them to verifying executions using a
small number of processes. Execution time of such methods
is also usually high. DAMPI [14] is a dynamic formal
verification tool which overcomes this limitation by using
a distributed heuristics-based deadlock detection algorithm.

The most practical method for detecting deadlocks in
terms of scalability is run-time analysis. Tools using this



kind of analysis only detect deadlocks which would actually
occur during the current execution of a program. Mar-
mot [15] and MPI-CHECK [16] employ synchronized time-
out based strategies to detect deadlock conditions. Time-out
based strategies may report false-positive error cases and
generally cannot pinpoint the exact reason for the error. On
the other hand, the run-time analysis tool, Umpire [17] uses
a centralized WFG based on the generalized AND ⊕ OR
model developed by Hilbrich et al. [18]. However, MPI-
CHECK, Marmot and Umpire are all based on the client-
server model, which limits their scalability to a few hundred
threads. In order to overcome this limitation, MUST [19]
utilizes a flexible and efficient communication system to
transfer records related to error detection between different
processes or threads.

Our algorithm uses a different approach to detect dead-
locks involving collective operations. We exploit two prop-
erties of operations in UPC which make deadlock detection
easier than in MPI. Firstly, communication between two
processes is non-blocking and secondly, non-determinism
of point-to-point communication operations in terms of
any source cannot occur in UPC. However, both UPC and
MPI require that the order of collective operations and the
values passed to the single-valued arguments must be the
same on all threads/processes. Non-adherence to these re-
strictions could lead to a deadlock. We extend our algorithm
to detect deadlocks involving locks, collective operations
and both by using a distributed shared WFG. In our WFG,
we identify not only dependency cycles but also those
dependency chains that cannot be satisfied due to blocking
collective operations.

III. DETECTING DEADLOCKS DUE TO COLLECTIVE
ERRORS IN COLLECTIVE OPERATIONS

Terms used throughout the rest of this paper are:
1) THREADS is an integer variable that refers to the

total number of threads with which the execution of
the application was initiated.

2) A UPC operation is defined as any UPC statement or
function listed in the UPC specification.

3) The state of a thread is defined as the name of
the UPC operation that the thread has reached. In
case the thread is executing an operation which is
not a collective or lock-related UPC operation, the
state is set to unknown. If the thread has completed
execution, the state is set to end_of_execution.

4) A single-valued argument is an argument of a UPC
collective operation which must be passed the same
value on every thread.

5) The signature of a UPC operation on a thread consists
of the name of the UPC operation and the values
which are about to be passed to each of the single-
valued arguments of the UPC collective operation on
that thread.

6) For any thread k, sk is a shared data structure which
stores the state of thread k in field sk.op. In case state
is the name of a UPC collective operation, sk also
stores the single-valued arguments of the operation on
that thread.

7) To compare the signatures of UPC operations stored
in si and sj means to check whether all the fields in
si and sj are identical.

8) If all the fields in si and sj are identical, the result
of the comparison is a match, otherwise there is a
mismatch.

9) C(n, k) denotes the nth collective operation executed
by thread k.

The UPC specification requires that the order of calls
to UPC collective operations must be the same for all
threads [20]. Additionally, each ‘single-valued’ argument
of a collective operation must have the same value on all
threads. Therefore deadlocks involving only collective UPC
operations can be created if:

1) different threads are waiting at different collective
operations,

2) values passed to single-valued arguments of collective
functions do not match across all threads, and

3) some threads are waiting at a collective operation
while at least one thread has finished execution.

An algorithm to check whether any of the above 3 cases
is going to occur must compare the collective operation
which each thread is going to execute next and its single-
valued arguments with those on other threads. Our algo-
rithm achieves this by viewing the threads as if they were
arranged in a circular ring. The left and right neighbors of
a thread i are thread (i− 1)%THREADS and thread (i+
1)%THREADS respectively. Each thread checks whether
its right neighbor has reached the same collective operation
as itself. Since this checking goes around the whole ring, if
all the threads arrive at the same collective operation, then
each thread will be verified by its left neighbor and there
will be no mismatches of the collective operations. However,
if any thread comes to a collective operation which is not
the same as that on the other thread, its left neighbor can
identify the discrepancy, and issue an error message. This is
illustrated in Figure 1. The correctness of this approach is
proven in Section III-C.

On reaching a collective UPC operation, a thread k
first records the signature of the collective operation in
sk. Thread k sets sk.op to unknown after exiting from a
operation. Let a and b be the variables that store signatures of
collective operations. The assign (←) and the compare (�)
operations for the signatures of collective operation stored
in a and b are defined as follows:

1) b← a means
a) assign value of variable a.op to variable b.op, and
b) if a.op 6= end of execution, copy values of



Figure 1. Circular ring of threads checking the order of collective UPC
operations

single-valued arguments recorded in a to b

2) b � a is true if
a) b.op 6= a.op, or
b) if a.op 6= end of execution, any of the single-

valued arguments recorded in a is not identical
to the corresponding argument recorded in b.

Figure 2. Checking signatures: Thread i reaches collective operation
before thread j. (a) no error case. (b) error case.

Let thread j be the right neighbor of thread i. During
execution, thread i or thread j could reach their respective
nth collective operation first. If thread i reaches the opera-
tion first, then it cannot compare C(n, i) recorded in si with
C(n, j), since sj does not contain the signature of the nth

collective operation encountered on thread j, i.e. C(n, j).
The comparison can be delayed until thread j reaches its
nth collective operation. In order to implement this, another
shared variable dsk is used on each thread k to store the
desired signature. For faster access, both shared variables
sk and dsk have affinity1 to thread k. If thread i finds that
thread j has not reached a collective operation (sj .op is
unknown), then it assigns si to dsj . When thread j reaches
a collective operation it first records the signature in sj
and then compares it with dsj . If they do not match, then
thread j issues an error message, otherwise it sets dsj .op to
unknown and continues. This is illustrated in Figure 2.

Figure 3. Checking signatures: Thread i reaches collective operation after
thread j. (a) no error case. (b) error case.

If thread i reaches the collective operation after thread j
(sj .op is assigned a name of a collective UPC operation),
then thread i compares sj with si. If they match, then there
is no error, so execution continues. This is illustrated in
Figure 3.

The UPC specification does not require collective op-
erations to be synchronizing. This could result in one or
more state variables on a thread being reassigned with the
signature of the next collective operation that it encounters
before the necessary checking is completed. To ensure that
the signature of the nth collective operation encountered on
thread i i.e. C(n, i) is compared with the signature of the nth

1In UPC, shared variables that are stored in the physical memory of a
thread are said to have affinity to that thread.



collective operation encountered on thread j, i.e. C(n, j), the
algorithm must ensure that:

1) If thread i reaches the nth collective operation before
thread j and assigns dsj the signature of C(n, i), it
does not reassign dsj before thread j has compared
dsj with sj , and

2) If thread j reaches the nth collective operation before
thread i and assigns sj the signature of C(n, j), it does
not reassign sj before either thread i has a chance to
compare it with si or thread j has a chance to compare
it with dsj .

In order to achieve the behavior described above, two
shared variables r sj and r dsj are used for every thread j.
Variable r sj is used to prevent thread j from reassigning sj
before the necessary comparisons described above are com-
pleted. Similarly, variable r dsj is used to prevent thread i
from reassigning dsj before the necessary comparisons are
completed. Both r sj and r dsj have affinity to thread j.

For thread j, shared data structures sj and dsj are
accessed by thread i and thread j. To avoid race conditions,
accesses to sj and dsj are guarded using lock L[j].

Our deadlock algorithm is implemented via the following
three functions:

• check entry() function which is called before each UPC
operation to check whether executing the operation
would cause a deadlock,

• record exit() function which is called after each UPC
operation to record that the operation is complete and
record any additional information if required, and

• check final() function which is called before every
return statement in the main() function and ev-
ery exit() function to check for possible deadlock
conditions due to the termination of this thread.

The pseudo-code of the distributed algorithm2 on each
thread i to check deadlocks caused by incorrect or missing
calls to collective operations3 is presented below. Function
check entry() receives as argument the signature of the
collective operation that the thread has reached, namely
f sig.

A. Algorithm A1: Detecting wrong-order sequence of calls
to collective operations

1: On thread i:
2: ——————————————————————
3: Initialization
4: si.op← dsi.op← unknown, r_si ← 1, r_dsj ← 1

2As presented, the algorithm forces synchronization even for non-
synchronizing UPC collective operations. However, if forced synchroniza-
tion is a concern, this can be handled with a queue of states. This will not
change the O(1) behavior.

3UPC-CHECK treats non-synchronizing collective operations as syn-
chronizing operations because the UPC 1.2 specification says that ”Some
implementations may include unspecified synchronization between threads
within collective operations” (footnote; page 9).

5: ——————————————————————
6: {Function definition of check entry(f_sig):}
7: if THREADS = 1 then
8: Exit check.
9: else

10: Acquire L[i]
11: si ← f sig
12: r si ← 0
13: if dsi.op 6= unknown then
14:
15: if dsi � si then
16: Print error and call global exit function.
17: end if
18: r si ← 1
19: r dsi ← 1
20: dsi.op← unknown
21: end if
22: Release L[i]
23: Wait until r dsj = 1
24: Acquire L[j]
25:
26: if sj .op = unknown then
27:
28: dsj ← si
29: r dsj ← 0
30: else
31: if sj � si then
32: Print error and call global exit function
33: end if
34: r sj ← 1
35: end if
36: Release L[j]
37: end if
38: ——————————————————————-
39: {Function definition of check exit():}
40: Wait until r si = 1
41: Acquire L[i]
42: si.op← unknown
43: Release L[i]
44: ——————————————————————-
45: {Function definition of check final():}
46: Acquire L[i]
47: if dsi.op 6= unknown then
48: Print error and call global exit function.
49: end if
50: si.op← end of execution
51: Release L[i]
52: ——————————————————————-

B. Detecting deadlock errors involving upc notify and
upc wait operations

The compound statement {upc notify; upc wait} forms a
split barrier in UPC. The UPC specification requires that
firstly, there should be a strictly alternating sequence of



upc notify and upc wait calls, starting with a upc notify
call and ending with a upc wait call. Secondly, there can
be no collective operation between a upc notify and its
corresponding upc wait call. These conditions are checked
using a private binary flag on each thread which is set
when a upc notify statement is encountered and reset when
a upc wait statement is encountered. This binary flag is
initially reset. If any collective operation other than upc wait
is encountered when the flag is set, then there must be an
error. Similarly, if a upc wait statement is encountered when
the flag is reset, then there must be an error. Finally, if the
execution ends, while the flag is set, then there must be
an error. These checks are performed along with the above
algorithm and do not require any communication between
threads. Also modifying and checking private flags is an
operation with complexity of O(1).

If all the threads issue the upc notify statement, then the
next UPC collective operation issued on all the threads must
be a upc wait statement. Therefore algorithm A1 working
in unison with the above check needs to only verify the
correct ordering of upc notify across all threads. The correct
ordering of the upc wait statements across all threads is
automatically guaranteed with the above mentioned checks.
This is reflected in Algorithm A2.

C. Proof of Correctness

Using the same relation between thread i and thread j,
i.e. thread i is the left neighbor of thread j, the proof of
correctness is structured as follows. Firstly, it is proved
that the algorithm is free of deadlocks and livelocks. Then
Lemma 3.1 is used to prove that the left neighbor of any
thread j does not reassign dsj before thread j can compare
sj with dsj . Lemma 3.2 proves that the right neighbor
of any thread i, does not reassign sj before thread i can
compare si with sj . Using Lemma 3.1 and Lemma 3.2
it is proven that for any two neighboring threads i and
j, signature of C(n, j) is compared to the signature of
C(n, i). Finally, using Lemma 3.3 the correctness of the
algorithm is proven by showing that : 1) no error message
is issued if all the threads have reached the same collective
operation with the same signature and 2) an error message
is issued if at least one thread has reached a collective
operation with a signature different from the signature of the
collective operation on any other thread. Case 1 is proved
by Theorem 3.4 and Case 2 is proved by Theorem 3.5.

There is no hold-and-wait condition in algorithm A1,
hence there cannot be any deadlocks in the algorithm. To
show that the algorithm is livelock-free, we show that any
given thread must eventually exit the waits on line 24 and
42. For any thread i reaching its nth collective operation
C(n, i), thread i can wait at line 24 if thread i itself had
set r dsj to 0 on line 30 on reaching C(n − 1, i). This is
possible only if thread i found that sj .op = unknown on
line 27, i.e. thread j is not executing an UPC collective

operation. Eventually thread j either reaches the end of
execution or a UPC collective operation. In the former case,
a deadlock condition is detected, an error message is issued
and the application exits. In the second case, thread j finds
conditional statement on line 14 to be true and sets r dsj to
1 on line 20. Since only thread i can set r dsj to 0 again,
thread i would definitely exit the wait on line 24. Similarly,
for thread j to be waiting at line 42 after executing C(n, j),
it must not have set r sj to 1 at line 19. This means that
dsj .op must be equal to unknown at line 14, implying that
thread i has still not executed line 29 and hence line 27 (by
temporal ordering) due to the atomic nature of operations
accorded by L[j]. When thread i finally acquires L[j], the
conditional statement on line 27 must evaluate to false. If
thread i has reached a collective operation with a signature
different from that of C(n, j), a deadlock error message is
issued, otherwise r sj is set to 1. Since only thread j can
set r sj to 0 again, it must exit the waiting at line 42.

Lemma 3.1: After thread i assigns the signature of
C(n, i) to dsj , then thread i does not reassign dsj before
thread j compares sj with dsj .

Proof: This situation arises only if thread i has reached
a collective operation first. After thread i sets dsj to si
(which is already set to C(n, i)) at line 29, it sets r dsj
to 0 at line 30. Thread i cannot reassign dsj until r dsj is
set to 1. Only thread j can set r dsj to 1 after comparing
sj with dsj at line 21.

Lemma 3.2: After thread j assigns the signature of
C(n, j) to sj , then thread j does not reassign sj before
it is compared with si.

Proof: After thread j assigns the signature of C(n, j)
to sj at line 13, it sets r sj to 0. Thread j cannot modify
sj until r sj is set to 1. If thread i has already reached
the collective operation, then thread j sets r sj to 1 at line
20 only after comparing sj with dsj at line 17. However,
thread i must have copied the value of si to dsj at line
29. Alternatively, thread j might have reached the collective
operation first. In this case, thread i sets r sj to 1 at line
36 after comparing si to sj at line 33.

Lemma 3.3: For any neighboring threads i and j, the
signature of C(n, i) is always compared with the signature
of C(n, j).

Proof: This is proved using induction on the number
of the collective operations encountered on threads i and j.

Basis. Consider the case where n equals 1, i.e. the first
collective operation encountered on thread i and thread j.
The signature of C(1, i) is compared with the signature
of C(1, j). If thread i reaches collective operation C(1, i)
first, then it assigns dsj the signature of C(1, i). Using
Lemma 3.1, thread i cannot reassign dsj until dsj is
compared with sj by thread j on reaching its first collective
operation, C(1, j). Alternatively, if thread j reaches its
collective operation first, then Lemma 3.2 states that after
thread j assigns the signature of C(1, j) to sj , thread



j cannot reassign sj before it is compared with si. The
comparison between sj and si is done by thread i after it
reaches its first collective operation and has assigned si the
signature of C(1, i).

Inductive step. If the signature of C(n, i) is compared
with the signature of C(n, j), then it can be proven that the
signature of C(n + 1, i) is compared with the signature of
C(n+1, j). If thread i reaches its next collective operation
C(n+1, i) first, then it assigns dsj the signature of C(n+
1, i). Using Lemma 3.1, thread i cannot reassign dsj until
dsj is compared with sj by thread j on reaching its next
collective operation, i.e. C(n+1, j). Alternatively, if thread
j reaches its next collective operation first, then Lemma 3.2
states that after thread j assigns C(n + 1, j) to sj , thread
j cannot reassign sj before it is compared with si. The
comparison of sj with si is done by thread i after it reaches
its next collective operation and has asigned si the signature
of C(n+ 1, i).

Using Lemma 3.3, it is proven that for any neighboring
thread pair i and j, the signature of nth collective operation
of thread i is compared with the signature of nth collective
operation of thread j. As j varies from 0 to THREADS−1,
it can be said that when the nth collective operation is
encountered on any thread, it is checked against the nth

encountered collective operation on every other thread be-
fore proceeding. Thus in the following proofs, we need to
only concentrate on a single (potentially different) collective
operation on each thread. In the following proofs, let the
signature of the collective operation encountered on a thread
k be denoted by Sk. If a state or desired state ai.op is
unknown, then it is denoted as a = U for succinctness.
Then in algorithm A1, after assigning the signature of the
encountered collective operation, i.e. line si ← f sig, notice
that for thread i:
si must be Si,
dsi must be either U or Si−1,
sj must be either U or Sj , and
dsj must be U .

Theorem 3.4: If all the threads arrive at the same col-
lective operation, and the collective operation has the same
signature on all threads, then Algorithm A1 will not issue
an error message.

Proof: If THREADS is 1, no error message is issued,
so we need to consider only cases of execution when
THREADS > 1. If all threads arrive at the same collective
operation with the same signature, then during the checks
after si ← f sig, is the same for all i. Let S denote
this common signature. We will prove this theorem by
contradiction. An error message is printed only if:

1) dsi 6= U and dsi 6= si ⇒ dsi = S and dsi 6= S ⇒
S 6= S (contradiction) or

2) sj 6= U and sj 6= si ⇒ sj = S and sj 6= S ⇒ S 6= S
(contradiction)

So Theorem 3.4 is proved.

Theorem 3.5: If any thread has reached a collective op-
eration with a signature different from the signature of the
collective operation on any other thread, then a deadlock
error message is issued.

Proof: There can be a mismatch in the collective
operation or its signature only if there is more than one
thread.

Since the signatures of the collective operations reached
on every thread are not identical, there must be some thread i
for which Si � Sj . For these threads i and j, the following
procedures are made to be atomic and mutually exclusive
through use of lock L[j]:

• Action 1: Thread i checks sj . If sj = U , then thread i
executes dsj ← si, else, computes sj � si and issues
an error message if true.

• Action 2: Thread j assigns the signature of the col-
lective operation it has reached to sj . Thread j checks
dsj . If dsj 6= U , the thread j computes dsj � sj and
issues message if true.

There are only two possible cases of execution: either action
1 is followed by action 2 or vice versa.

In the first case, in action 1, thread i finds sj = U is true,
executes dsj ← Si and continues. Then in action 2, thread j
executes sj ← Sj , finds that dsj 6= U and hence computes
dsj � sj . Now, since dsj = Si and sj = Sj and Si 6= Sj

(by assumption) implies that dsj � sj is true. Therefore
thread j issues an error message.

In the second case, in action 2, thread j assigns sj ← Sj ,
finds dsj = U and continues. Before thread i initiates action
1 by acquiring L[j], it must have executed si ← Si. If
dsi 6= U and dsi � si, then an error message is issued
by thread i, otherwise it initiates action 1. Thread i finds
sj 6= U and computes sj � si. Now, since si = Si and
sj = Sj and Si � Sj (by assumption) implies that sj � sj
is true. Therefore thread i issues an error message.

Since the above two cases are exhaustive, an error is
always issued if Si � Sj and hence Theorem 3.5 is proved.

Theorem 3.6: The complexity of the Algorithm A1 is
O(1).

Proof: There are two parts to this proof.
1) The execution-time overhead for any thread i is O(1).

Any thread i computes a fixed number of instructions
before entering and after exiting a collective operation.
It waits for at most two locks L[i] and L[j] each
of which can have a dependency chain containing
only one thread, namely thread i − 1 and thread j
respectively. Thread i synchronizes with only two
threads, i.e. its left neighbor thread i − 1 and right
neighbor thread j. There is no access to variables or
locks from any other thread. Therefore the execution
time complexity of the algorithm in terms of the
number of threads is O(1).



2) The memory overhead of any thread i is independent
of the number of threads and is constant.

IV. DETECTING DEADLOCKS CREATED BY
HOLD-AND-WAIT DEPENDENCY CHAINS FOR ACQUIRING

LOCKS

In UPC, acquiring a lock with a call to the upc lock()
function is a blocking operation. In UPC program, deadlocks
involving locks occur when there exists one of the following
conditions:

1) a cycle of hold-and-wait dependencies with at least
two threads, or

2) a chain of hold-and-wait dependencies ending in a lock
held by a thread which has completed execution, or

3) a chain of hold-and-wait dependencies ending in a lock
held by a thread which is blocked at a synchronizing
collective UPC operation.

Deadlocks caused by the hold-and-wait dependencies can
be detected using a WFG shown in Figure 4. Threads waiting
for a lock are shown using boxes whereas locks are shown
as circles. A dashed arrow from a thread to the lock depicts
that thread is waiting for that lock. A solid arrow from a
lock to a thread shows that thread is holding that lock.

Figure 4. Circular dependencies of threads leading to a deadlock.

Using the same notations for locks, threads, hold and
wait actions, Figure 5 illustrates a chain of hold-and-wait
dependencies. This chain of dependencies will never be
resolved if the lock held by the thread depicted as the
gray box will never be released. This can happen only if
the thread has either completed execution or is blocked
at a synchronizing collective operation which will not be
completed.

Figure 5. Chain of hold-and wait dependencies while trying to acquire a
lock leading to a deadlock.

Our algorithm uses a simple edge-chasing method to
detect deadlocks involving locks in UPC programs. Before a

thread u tries to acquire a lock, it checks if the lock is free or
not. If it is free, the thread continues execution. Otherwise,
if the lock is held by thread v, thread u checks sv.op to
check if thread v:

1) is not executing a collective UPC operation or
upc_lock operation (sv.op is unknown), or

2) is waiting to acquire a lock, or
3) has completed execution, or
4) is waiting at a synchronizing collective UPC operation.

If thread v is waiting to acquire a lock, then thread u
continues to check the state of the next thread in the
chain of dependencies. If thread u finally reaches thread
m which is not executing a collective UPC operation or
upc_lock operation, then no deadlock is detected. If
thread u finds itself along the chain dependencies, then it
reports a deadlock condition. Similarly, if thread u finds
thread w which has completed execution at the end of the
chain of dependencies, then it issues an error message.

When the chain of dependencies ends with a thread
waiting at a collective synchronizing operation, the deadlock
detection algorithm needs to identify whether the thread will
finish executing the collective operation or not. Figure 6
illustrates these two cases. Thread u is trying to acquire
a lock in a chain of dependencies ending with thread w.
When thread u checks the sw.op of thread w, thread w may
(a) not have returned from the nth synchronizing collective
operation Cs(n,w), (b) have returned from the nth synchro-
nizing collective operation but has not updated the sw.op
in the check exit() function, (c) have completed executing
check entry() function for the next synchronizing collec-
tive operation Cs(n+ 1, w), or (d) waiting at the (n+ 1)th

synchronizing collective operation Cs(n + 1, w). The nth

synchronizing collective operation encountered on thread w
must be a valid synchronization operation that all threads
must have called (otherwise the check entry() function
would have issued an error message). Therefore scenarios
(a) and (b) are not deadlock conditions, while (c) and (d)
are. To identify and differentiate between these scenarios, a
binary shared variable sync phasek is introduced for each
thread k. Initially sync phasek is set to 0 for all threads.
At the beginning of each check entry() function on thread
k, the value sync phasek is toggled. Thread u can now
identify the scenarios by just comparing sync phaseu and
sync phasew. If they match (are in-phase), then it is either
scenario (a) or (b) and hence no deadlock error message
is issued. If they do not match (are out-of-phase), then it is
either scenario (c) or (d) and hence a deadlock error message
is issued.

A. The complete deadlock detection algorithm

The complete algorithm to detect deadlocks created by
errors in collective operations and hold-and-wait depen-
dency chains for acquiring locks is presented below. The



Figure 6. Possible scenarios when detecting deadlocks involving chain of
hold-and wait dependencies. Scenario (a) or (b) is not a deadlock condition,
while scenario (c) or (d) is.

check entry() and check exit() functions receive two ar-
guments: 1) the signature of the UPC operation that the
thread has reached, namely f sig and 2) the pointer L ptr.
L ptr points to the lock which the thread is trying to
acquire or release if the thread has reached a upc lock,
upc lock attempt or upc unlock statement.

Algorithm A2.
1: On thread i:
2: ——————————————————————-
3: Initialization
4: Create empty list of acquired and requested locks
5: si.op ← dsi.op ← unknown, r_si ← 1, r_dsj ← 1,
(sync phasei ← 0)

6: ——————————————————————-
7: {Function definition of check entry(f sig, L ptr):}
8: Acquire L[i]
9: si ← f sig

10: Release L[i]
11: if f sig.op = at upc wait statement then
12: Exit check
13: else if f sig.op = at upc lock operation then
14: Acquire c L
15: Check status of Lptr
16: if L ptr is held by this thread

or is part of a cycle
or chain of dependencies then

17: Print suitable error and call global exit
18: else
19: Update list of requested locks
20: Release c L
21: Exit check
22: end if
23: else if f sig.op = at upc unlock operation then
24: if L ptr is not held by this thread then

25: Print suitable error and call global exit.
26: else
27: Update list of acquired locks
28: Exit check
29: end if
30: else
31: {Thread must have reached a collective operation}
32: if THREADS = 1 then
33: Exit check.
34: end if
35: Acquire c L
36: if this thread holds locks which are in the list of

requested locks then
37: Print suitable error and call global exit.
38: end if
39: Release c L
40: Acquire L[i]
41: r si ← 0
42: if this is a synchronizing collective operation then
43: sync phasei ← (sync phasei + 1)%2
44: end if
45: if dsi.op 6= unknown then
46: if dsi � si then
47: Print error and call global exit function.
48: end if
49: r si ← 1
50: r dsi ← 1
51: dsi.op← unknown
52: end if
53: Release lock L[i]
54: Wait until r dsj = 1
55: Acquire lock L[j]
56: if sj .op = unknown then
57: dsj ← si
58: r dsj ← 0
59: else
60: if sj � si then
61: Print error and call global exit function
62: end if
63: r sj ← 1
64: end if
65: Release lock L[j]
66: end if
67: ——————————————————————-
68: {Function definition of check exit(f sig, L ptr):}
69: Wait until r si = 1
70: Acquire L[i]
71: si ← unknown
72: Release L[i]
73: if f sig.op = at upc lock operation then
74: Acquire c L
75: Remove L ptr from the list of requested locks
76: Add L ptr to the list of acquired locks
77: Release c L



78: Continue execution.
79: else if f sig.op = at upc lock attempt operation

then
80: if L ptr was achieved then
81: Acquire c L
82: Remove L ptr from the list of requested locks
83: Add L ptr to the list of acquired locks
84: Release c L
85: end if
86: Continue execution.
87: else
88: Continue execution.
89: end if
90: —————————————————————–
91: {Function definition of check final():}
92: Acquire L[i]
93: si ← end of execution
94: if dsi.op 6= unknown then
95: Print error and call global exit function.
96: end if
97: Release L[i]
98: Acquire c L
99: if this thread holds locks which are in the list of

requested locks then
100: Print suitable error and call global exit.
101: end if
102: if this thread is still holding locks then
103: Print suitable warning
104: end if
105: Release c L
106: —————————————————————–

Checking for dependency chains and cycles adds only a
constant amount of time overhead for each thread in the
chain or cycle. This means that the overhead is O(T) where
T is the number of threads in the dependency chain.

V. EXPERIMENTAL VERIFICATION OF SCALABILITY

This deadlock detection algorithm has been implemented
in the UPC-CHECK tool [4]. UPC-CHECK was used to
experimentally verify the scalability of this algorithm on a
Cray XE6 machine running the CLE 4.1 operating system.
Each node has two 16-core Interlagos processors. Since we
are interested in the verification of scalability, the authors
measured the overhead of our deadlock detection method
for 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096
and 8192 threads. The verification of scalability was carried
out by first measuring the overhead incurred when calling a
UPC collective operation and then measuring the overhead
when running the CG and IS UPC NAS Parallel Benchmarks
(NPB) [21]. The Cray C 8.0.4 compiler was used with the
-hupc option. To pin processes and memory the aprun
command was used with the following options: -ss -cc
cpu.

The authors first measured the overhead of checking for
deadlocks involving the upc_all_broadcast operation
with a message consisting of one 4 byte integer. Since
deadlock checking is independent of the message size, the
small message size was used so that the checking overhead
could be easily measured. To measure the time accurately,
10,000 calls to upc_all_broadcast were timed and an
average reported.

time (t1);
for (i = 0; i < 10000; i++)
{

upc_all_broadcast;
}
time {t2};
bcast_time = (t2 - t1)/10000;

Overhead times ranged from 76 to 123 microseconds for
multiple nodes, i.e. 64, 128, 256, 512, 1024, 2048, 4096 and
8192 threads. When replacing upc_all_broadcast with
upc_all_gather_all, overhead times ranged from 73
to 119 microseconds. In both cases, a slight increase is
observed as we increase the number of threads. The authors
attribute this to the fact that, in general, not all pairs
of UPC threads can be mapped to physical processors
for which the communication between UPC threads i and
(i + 1)%THREADS is the same for all i. The maximal
communication time for optimally placed UPC threads still
grows slowly as the total number of UPC threads grows.
The deviation from constant time in the above experiment
is only a factor of 1.5 for 128 times as many UPC threads.

UPC-CHECK was tested for correctness using 150 tests
from the UPC RTED test suite [6]. Each test contains a
single deadlock. For all the tests, UPC-CHECK detects the
error, prevents the deadlock from happening and exits after
reporting the error correctly [4]. Since these tests are very
small, the observed overhead was so small that we could not
measure them accurately.

Timing results for the UPC NPB CG and IS benchmarks
are presented in Tables I and II using 2, 4, 8, 16, 32, 64,
128, and 256 threads. Timings using more than 256 threads
could not be obtained since these benchmarks are written in
a way that prevents them from being run with more than 256
threads. These results also demonstrate the scalability of the
deadlock detection algorithm presented in this paper. Timing
data for the class B CG benchmark using 256 threads could
not be obtained since the problem size is too small to be
run with 256 threads.

VI. CONCLUSION

In this paper, a new distributed and scalable deadlock
detection algorithm for UPC collective operations is pre-
sented. The algorithm has been proven to be correct and to
have a run-time complexity of O(1). This algorithm has been
extended to detect deadlocks involving locks with a run-time



Class B Class C
Number
of
threads

Without
checks

With
checks

Overhead Without
checks

With
checks

Overhead

2 77.2 77.6 0.4 211.2 211.8 0.6
4 41.4 41.7 0.3 112.7 112.8 0.1
8 28.1 28.7 0.6 73.9 74.2 0.3
16 15.3 16.0 0.6 39.4 40.0 0.6
32 8.6 9.5 0.9 21.1 22.1 0.9
64 5.5 6.6 1.1 13.1 14.0 1.0
128 3.3 4.7 1.3 8.3 9.7 1.4
256 NA NA NA 5.6 7.2 1.6

Table I
TIME IN SECONDS OF THE UPC NPB-CG BENCHMARK WITH AND

WITHOUT DEADLOCK CHECKING

Class B Class C
Number
of
threads

Without
checks

With
checks

Overhead Without
checks

With
checks

Overhead

2 4.56 4.59 0.03 20.00 20.11 0.11
4 2.18 2.18 0.00 9.50 9.52 0.01
8 1.34 1.34 0.00 5.28 5.28 0.00
16 0.79 0.79 0.00 3.46 3.46 0.00
32 0.42 0.43 0.01 1.89 1.89 0.00
64 0.29 0.30 0.01 1.30 1.31 0.01
128 0.21 0.22 0.01 0.82 0.82 0.00
256 0.26 0.27 0.01 0.57 0.57 0.00

Table II
TIME IN SECONDS OF THE UPC NPB-IS BENCHMARK WITH AND

WITHOUT DEADLOCK CHECKING

complexity of O(T), T is the number of threads involved in
the deadlock. The extended algorithm utilizes a distributed
technique to check deadlock errors in collective operations
and uses a distributed wait-for-graph for detecting deadlocks
involving locks. The algorithm has been implemented in
the run-time error detection tool UPC-CHECK and tested
with over 150 functionality test cases. The scalability of
this deadlock detection algorithm has been experimentally
verified using up to 8192 threads.

In UPC-CHECK, the algorithm is implemented through
automatic instrumentation of the application via a source-
to-source translator created using the ROSE toolkit [22].
Alternatively, such error detection capability may be added
during the precompilation step of a UPC compiler. This
capability could be enabled using a compiler option and
may be used during the entire debugging process as the
observed memory and execution time overhead even for a
large number of threads is quite low.

ACKNOWLEDGMENT

This work was supported by the United States Department
of Defense & used resources of the Extreme Scale Systems
Center at Oak Ridge National Laboratory.

REFERENCES

[1] T. El-Ghazawi, W. Carlson, T. Sterling, and K. Yelick,
UPC: Distributed Shared Memory Programming. Wiley-
Interscience, 2003.

[2] “Unified Parallel C (Wikipedia).” [Online]. Available:
http://en.wikipedia.org/wiki/Unified Parallel C

[3] K. Yelick, D. Bonachea, W.-Y. Chen, P. Colella, K. Datta,
J. Duell, S. L. Graham, P. Hargrove, P. Hilfinger,
P. Husbands, C. Iancu, A. Kamil, R. Nishtala, J. Su,
M. Welcome, and T. Wen, “Productivity and performance
using partitioned global address space languages,” in
Proceedings of the 2007 international workshop on Parallel
symbolic computation, ser. PASCO ’07. New York,
NY, USA: ACM, 2007, pp. 24–32. [Online]. Available:
http://doi.acm.org/10.1145/1278177.1278183

[4] J. Coyle, I. Roy, M. Kraeva, and G. Luecke, “UPC-CHECK:
a scalable tool for detecting run-time errors in Unified
Parallel C,” Computer Science - Research and Development,
pp. 1–7, 10.1007/s00450-012-0214-4. [Online]. Available:
http://dx.doi.org/10.1007/s00450-012-0214-4

[5] A. Ebnenasir, “UPC-SPIN: A Framework for the
Model Checking of UPC Programs,” in Proceed-
ings of Fifth Conference on Partitioned Global
Address Space Programming Models, ser. PGAS ’11,
2011. [Online]. Available: http://pgas11.rice.edu/papers/
Ebnenasir-UPC-Model-Checking-PGAS11.pdf

[6] J. Coyle, J. Hoekstra, M. Kraeva, G. R. Luecke, E. Kleiman,
V. Srinivas, A. Tripathi, O. Weiss, A. Wehe, Y. Xu, and
M. Yahya, “UPC run-time error detection test suite,” 2008.
[Online]. Available: http://rted.public.iastate.edu/UPC/

[7] J. Träff and J. Worringen, “Verifying collective MPI
calls,” in Recent Advances in Parallel Virtual Machine and
Message Passing Interface, ser. Lecture Notes in Computer
Science, D. Kranzlmüller, P. Kacsuk, and J. Dongarra,
Eds. Springer Berlin / Heidelberg, 2004, vol. 3241, pp.
95–107, 10.1007/978-3-540-30218-6 11. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-30218-6 11

[8] C. Falzone, A. Chan, E. Lusk, and W. Gropp, “Collective
error detection for MPI collective operations,” in Recent
Advances in Parallel Virtual Machine and Message Passing
Interface, ser. Lecture Notes in Computer Science,
B. Di Martino, D. Kranzlmller, and J. Dongarra,
Eds. Springer Berlin / Heidelberg, 2005, vol. 3666,
pp. 138–147, 10.1007/11557265 21. [Online]. Available:
http://dx.doi.org/10.1007/11557265 21

[9] W. Gropp, “Runtime checking of datatype signatures in
MPI,” in Recent Advances in Parallel Virtual Machine and
Message Passing Interface, ser. Lecture Notes in Computer
Science, J. Dongarra, P. Kacsuk, and N. Podhorszki,
Eds. Springer Berlin / Heidelberg, 2000, vol. 1908, pp.
160–167, 10.1007/3-540-45255-9 24. [Online]. Available:
http://dx.doi.org/10.1007/3-540-45255-9 24



[10] S. Siegel, “Verifying parallel programs with MPI-Spin,”
in Recent Advances in Parallel Virtual Machine and
Message Passing Interface, ser. Lecture Notes in Computer
Science, F. Cappello, T. Herault, and J. Dongarra, Eds.
Springer Berlin / Heidelberg, 2007, vol. 4757, pp. 13–
14, 10.1007/978-3-540-75416-9 8. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-540-75416-9\ 8

[11] S. S. Vakkalanka, S. Sharma, G. Gopalakrishnan, and R. M.
Kirby, “ISP: a tool for model checking mpi programs,”
in Proceedings of the 13th ACM SIGPLAN Symposium
on Principles and practice of parallel programming, ser.
PPoPP ’08. New York, NY, USA: ACM, 2008, pp.
285–286. [Online]. Available: http://doi.acm.org/10.1145/
1345206.1345258

[12] J. Yang, T. Chen, M. Wu, Z. Xu, X. Liu, H. Lin,
M. Yang, F. Long, L. Zhang, and L. Zhou, “MODIST:
transparent model checking of unmodified distributed
systems,” in Proceedings of the 6th USENIX symposium
on Networked systems design and implementation, ser.
NSDI’09. Berkeley, CA, USA: USENIX Association, 2009,
pp. 213–228. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1558977.1558992

[13] S. Vakkalanka, G. Gopalakrishnan, and R. M. Kirby,
“Dynamic verification of MPI programs with reductions
in presence of split operations and relaxed orderings,”
in Proceedings of the 20th international conference on
Computer Aided Verification, ser. CAV ’08. Berlin,
Heidelberg: Springer-Verlag, 2008, pp. 66–79. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-70545-1 9

[14] A. Vo, S. Aananthakrishnan, G. Gopalakrishnan, B. de Supin-
ski, M. Schulz, and G. Bronevetsky, “A scalable and dis-
tributed dynamic formal verifier for MPI programs,” in High
Performance Computing, Networking, Storage and Analysis
(SC), 2010 International Conference for, nov. 2010, pp. 1
–10.

[15] B. Krammer, M. Müller, and M. Resch, “MPI application
development using the analysis tool MARMOT,” in
Computational Science - ICCS 2004, ser. Lecture
Notes in Computer Science, M. Bubak, G. van
Albada, P. Sloot, and J. Dongarra, Eds. Springer
Berlin / Heidelberg, 2004, vol. 3038, pp. 464–
471, 10.1007/978-3-540-24688-6 61. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-24688-6 61

[16] G. R. Luecke, Y. Zou, J. Coyle, J. Hoekstra, and M. Kraeva,
“Deadlock detection in MPI programs,” Concurrency and
Computation: Practice and Experience, vol. 14, no. 11,
pp. 911–932, 2002. [Online]. Available: http://dx.doi.org/10.
1002/cpe.701

[17] J. S. Vetter and B. R. de Supinski, “Dynamic software
testing of MPI applications with Umpire,” in Proceedings
of the 2000 ACM/IEEE conference on Supercomputing
(CDROM), ser. Supercomputing ’00. Washington, DC,
USA: IEEE Computer Society, 2000. [Online]. Available:
http://dl.acm.org/citation.cfm?id=370049.370462

[18] T. Hilbrich, B. R. de Supinski, M. Schulz, and M. S. Müller,
“A graph based approach for MPI deadlock detection,”
in Proceedings of the 23rd international conference on

Supercomputing, ser. ICS ’09. New York, NY, USA:
ACM, 2009, pp. 296–305. [Online]. Available: http:
//doi.acm.org/10.1145/1542275.1542319

[19] T. Hilbrich, M. Schulz, B. R. Supinski, and M. S. Müller,
“MUST: A scalable approach to runtime error detection in
mpi programs,” in Tools for High Performance Computing
2009, M. S. Müller, M. M. Resch, A. Schulz, and
W. E. Nagel, Eds. Springer Berlin Heidelberg, 2010, pp.
53–66, 10.1007/978-3-642-11261-4 5. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-11261-4\ 5

[20] The UPC Consortium, “UPC Language Specifications
(v1.2),” 2005. [Online]. Available: http://www.gwu.edu/
∼upc/docs/upc specs 1.2.pdf

[21] “UPC NAS Parallel Benchmarks.” [Online]. Available:
http://threads.hpcl.gwu.edu/sites/npb-upc

[22] D. J. Quinlan and et al., “ROSE compiler project.” [Online].
Available: http://www.rosecompiler.org/


