A scalable deadlock detection algorithm for UPC collective operations

Indranil Roy, Glenn R. Luecke, James Coyle, and Marina Kraeva
lowa State University’s High Performance Computing Group, lowa State University,
Ames, lowa 50011, USA
Email: iroy@iastate.edu, grl@iastate.edu, jjc@iastate.edu, kraeva@iastate.edu.

Abstract—Unified Parallel C (UPC) is a language used to
write parallel programs for shared and distributed memory
parallel computers. Deadlock detection in UPC programs
requires detecting deadlocks that involve either locks, collective
operations, or both. In this paper, a distributed deadlock detec-
tion algorithm for UPC programs that uses run-time analysis
is presented. The algorithm detects deadlocks in collective
operations using a distributed technique with O(1) run-time
complexity. The correctness and optimality of the algorithm
is proven. For completeness, the algorithm is extended to
detect deadlocks involving both locks and collective operations
by identifying insolvable dependency chains and cycles in a
shared wait-for-graph (WFG). The algorithm is implemented
in the run-time error detection tool UPC-CHECK and tested
with over 150 functionality test cases. The scalability of this
deadlock detection algorithm for UPC collective operations is
experimentally verified using up to 8192 threads.

Keywords-deadlock, collective, verification, Partitioned
Global Address Space (PGAS), Unified Parallel C(UPC).

I. INTRODUCTION

Unified Parallel C (UPC) [1], [2] is an extension of the
C programming language for parallel execution on shared
and distributed memory parallel machines. UPC uses the
Partitioned Global Address Space (PGAS) [3] parallel pro-
gramming model where shared variables may be directly
read and written by any thread.

Deadlocks in complex application programs are often
difficult to locate and fix. Currently UPC-CHECK [4] and
UPC-SPIN [5] are the only tools available for the detec-
tion of deadlocks in UPC programs. UPC-SPIN employs
a model-checking method which inherently does not scale
beyond a few threads. In addition, every time the program
is modified, the model has to be updated. In contrast,
UPC-CHECK uses the algorithm presented in this paper
to automatically detect deadlocks at run-time for programs
executing on thousands of threads.

This new algorithm not only detects deadlocks involving
UPC collective operations, but also verifies the arguments
passed to the collective operation for consistency. The run-
time complexity of this algorithm is shown to be O(1). The
algorithm has been extended to detect deadlocks involving
both collective operations and locks. The run-time complex-
ity of the extended algorithm is O(T"), where T is the number
of threads. Using this deadlock detection algorithm UPC-
CHECK detects all deadlock error test cases from the UPC

RTED test suite [6].

The rest of this paper is organized as follows. Sec-
tion II provides the background of various existing deadlock
detection techniques. In Section III, a new algorithm to
detect potential deadlocks due to incorrect usage of UPC
collective operations is presented. The correctness and run-
time complexity analysis of the algorithm are also provided.
Section IV describes the extended algorithm to detect dead-
locks involving both locks and collective operations. The
scalability of this deadlock detection algorithm is experimen-
tally confirmed in Section V. Finally, Section VI contains
the concluding remarks.

II. BACKGROUND

Out-of-order calls to collective operations on different
threads may create a deadlock. Even when the calls to
collective operations are in-order, various non-local seman-
tics dictate that consistent arguments need to be used in
all participating threads. Non-adherence to these semantics
could lead to a deadlock or departure from intended behavior
of the program. However, building scalable tools to detect
such errors remains a challenge. Traff et al. [7] provided the
first verification tool for NEC MPI which used profiling to
provide limited non-local checks for parameters like unique
root thread, operators, length of data etc. Falzone et al. [§]
extended these checks to detect errors in datatype signature
of parameters using the “datatype signature hashing” mech-
anism devised by Gropp [9].

Model-checking tools like MPI-SPIN [10] and UPC-
SPIN [5] can detect all possible deadlock conditions aris-
ing from all combination of parameters in all possible
control-flows. However, such tools cannot scale beyond a
few threads due to the combinatorial state-space explosion.
Tools employing dynamic formal verification methods do
not check all the control flows and hence can be used for
larger programs. Such tools ISP [11], MODIST [12] and
POE [13] generally employ centralized deadlock detection
schemes which limit them to verifying executions using a
small number of processes. Execution time of such methods
is also usually high. DAMPI [14] is a dynamic formal
verification tool which overcomes this limitation by using
a distributed heuristics-based deadlock detection algorithm.

The most practical method for detecting deadlocks in
terms of scalability is run-time analysis. Tools using this

kind of analysis only detect deadlocks which would actually
occur during the current execution of a program. Mar-
mot [15] and MPI-CHECK [16] employ synchronized time-
out based strategies to detect deadlock conditions. Time-out
based strategies may report false-positive error cases and
generally cannot pinpoint the exact reason for the error. On
the other hand, the run-time analysis tool, Umpire [17] uses
a centralized WFG based on the generalized AND & OR
model developed by Hilbrich et al. [18]. However, MPI-
CHECK, Marmot and Umpire are all based on the client-
server model, which limits their scalability to a few hundred
threads. In order to overcome this limitation, MUST [19]
utilizes a flexible and efficient communication system to
transfer records related to error detection between different
processes or threads.

Our algorithm uses a different approach to detect dead-
locks involving collective operations. We exploit two prop-
erties of operations in UPC which make deadlock detection
easier than in MPI. Firstly, communication between two
processes is non-blocking and secondly, non-determinism
of point-to-point communication operations in terms of
any_source cannot occur in UPC. However, both UPC and
MPI require that the order of collective operations and the
values passed to the single-valued arguments must be the
same on all threads/processes. Non-adherence to these re-
strictions could lead to a deadlock. We extend our algorithm
to detect deadlocks involving locks, collective operations
and both by using a distributed shared WFG. In our WFG,
we identify not only dependency cycles but also those
dependency chains that cannot be satisfied due to blocking
collective operations.

III. DETECTING DEADLOCKS DUE TO COLLECTIVE
ERRORS IN COLLECTIVE OPERATIONS

Terms used throughout the rest of this paper are:

1) THREADS is an integer variable that refers to the
total number of threads with which the execution of
the application was initiated.

2) A UPC operation is defined as any UPC statement or
function listed in the UPC specification.

3) The state of a thread is defined as the name of
the UPC operation that the thread has reached. In
case the thread is executing an operation which is
not a collective or lock-related UPC operation, the
state is set to unknown. If the thread has completed
execution, the state is set to end_of_execution.

4) A single-valued argument is an argument of a UPC
collective operation which must be passed the same
value on every thread.

5) The signature of a UPC operation on a thread consists
of the name of the UPC operation and the values
which are about to be passed to each of the single-
valued arguments of the UPC collective operation on
that thread.

6) For any thread k, sj is a shared data structure which
stores the state of thread k in field s;.op. In case state
is the name of a UPC collective operation, s; also
stores the single-valued arguments of the operation on
that thread.

7) To compare the signatures of UPC operations stored
in s; and s; means to check whether all the fields in
s; and s; are identical.

8) If all the fields in s; and s; are identical, the result
of the comparison is a match, otherwise there is a
mismatch.

9) C(n,k) denotes the n'” collective operation executed
by thread k.

The UPC specification requires that the order of calls
to UPC collective operations must be the same for all
threads [20]. Additionally, each ‘single-valued’ argument
of a collective operation must have the same value on all
threads. Therefore deadlocks involving only collective UPC
operations can be created if:

1) different threads are waiting at different collective
operations,

2) values passed to single-valued arguments of collective
functions do not match across all threads, and

3) some threads are waiting at a collective operation
while at least one thread has finished execution.

An algorithm to check whether any of the above 3 cases
is going to occur must compare the collective operation
which each thread is going to execute next and its single-
valued arguments with those on other threads. Our algo-
rithm achieves this by viewing the threads as if they were
arranged in a circular ring. The left and right neighbors of
a thread ¢ are thread (i — 1) %THREADS and thread (i +
DATHREADS respectively. Each thread checks whether
its right neighbor has reached the same collective operation
as itself. Since this checking goes around the whole ring, if
all the threads arrive at the same collective operation, then
each thread will be verified by its left neighbor and there
will be no mismatches of the collective operations. However,
if any thread comes to a collective operation which is not
the same as that on the other thread, its left neighbor can
identify the discrepancy, and issue an error message. This is
illustrated in Figure 1. The correctness of this approach is
proven in Section III-C.

On reaching a collective UPC operation, a thread k
first records the signature of the collective operation in
sg. Thread k sets si.op to unknown after exiting from a
operation. Let a and b be the variables that store signatures of
collective operations. The assign («—) and the compare (%)
operations for the signatures of collective operation stored
in a and b are defined as follows:

1) b < a means

a) assign value of variable a.op to variable b.op, and
b) if a.op # end_of_execution, copy values of

...Eg

%A @A@A@ A“K

ey:

|::> Collective operations
match
: Collective operations
don’t match

...B.
+2

| a
‘ [Z] E] @ [3

%A

o A

Figure 1. Circular ring of threads checking the order of collective UPC

operations

single-valued arguments recorded in a to b
2) b ais true if
a) b.op # a.op, or
b) if a.op # end_of_execution, any of the single-
valued arguments recorded in a is not identical
to the corresponding argument recorded in b.

ds,
threads @ . n

Matches:
noerror

)
=

time
assigns

compares
compares

=
N
w
-

Mismatch:
Issue error
messgae

(1]

o)
=

threads @ '
T 8 | £ 8
| @ | 2 i @
] | Q -] i
£ A £ A © | E
= o 9
£ 3 £ -]
1 2 3 a4
(b)
Key:
i :unknown A\ :signature of O:signatureof
collective operation 1 collective operation 2
Figure 2. Checking signatures: Thread ¢ reaches collective operation

before thread j. (a) no error case. (b) error case.

Let thread j be the right neighbor of thread :. During
execution, thread ¢ or thread j could reach their respective
nt" collective operation first. If thread i reaches the opera-
tion first, then it cannot compare C(n, i) recorded in s; with
C(n, j), since s; does not contain the signature of the n'"
collective operation encountered on thread j, i.e. C(n,j).
The comparison can be delayed until thread j reaches its

h collective operation. In order to implement this, another
shared variable dsj is used on each thread k to store the
desired signature. For faster access, both shared variables
si and ds;, have affinity' to thread k. If thread i finds that
thread j has not reached a collective operation (s;.op is
unknown), then it assigns s; to ds;. When thread j reaches
a collective operation it first records the signature in s;
and then compares it with ds;. If they do not match, then
thread j issues an error message, otherwise it sets ds;.op to
unknown and continues. This is illustrated in Figure 2.

Matches:

no error

Q.
»
=~

=
B

«—— time

Key:
Sk ey

: unknown

threads

A : Signature of
collective operation 1

O : Signature of

collective operation 2

compares

> @

compares

2

Mismatch:
Issue error

message

o
»
~

@
B

«— time

threads

compares
compares

(b)

Figure 3. Checking signatures: Thread ¢ reaches collective operation after
thread j. (a) no error case. (b) error case.

If thread ¢ reaches the collective operation after thread j
(sj.op is assigned a name of a collective UPC operation),
then thread 7 compares s; with s;. If they match, then there
is no error, so execution continues. This is illustrated in
Figure 3.

The UPC specification does not require collective op-
erations to be synchronizing. This could result in one or
more state variables on a thread being reassigned with the
signature of the next collective operation that it encounters
before the necessary checking is completed. To ensure that
the signature of the n*" collective operation encountered on
thread i i.e. C'(n, i) is compared with the signature of the n*"

'In UPC, shared variables that are stored in the physical memory of a
thread are said to have affinity to that thread.

collective operation encountered on thread j, i.e. C(n, j), the
algorithm must ensure that:

1) If thread 7 reaches the n*” collective operation before
thread j and assigns ds; the signature of C(n,7), it
does not reassign ds; before thread j has compared
ds; with s;, and

2) If thread j reaches the n'* collective operation before
thread ¢ and assigns s; the signature of C'(n, j), it does
not reassign s; before either thread ¢ has a chance to
compare it with s; or thread j has a chance to compare
it with ds;.

In order to achieve the behavior described above, two
shared variables r_s; and r_ds; are used for every thread j.
Variable 7_s; is used to prevent thread j from reassigning s;
before the necessary comparisons described above are com-
pleted. Similarly, variable r_ds; is used to prevent thread ¢
from reassigning ds; before the necessary comparisons are
completed. Both r_s; and r_ds; have affinity to thread j.

For thread j, shared data structures s; and ds; are
accessed by thread ¢ and thread j. To avoid race conditions,
accesses to s; and ds; are guarded using lock L[j].

Our deadlock algorithm is implemented via the following
three functions:

o check_entry() function which is called before each UPC
operation to check whether executing the operation
would cause a deadlock,

e record_exit() function which is called after each UPC
operation to record that the operation is complete and
record any additional information if required, and

e check_final() function which is called before every
return statement in the main () function and ev-
ery exit () function to check for possible deadlock
conditions due to the termination of this thread.

The pseudo-code of the distributed algorithm? on each
thread ¢ to check deadlocks caused by incorrect or missing
calls to collective operations® is presented below. Function
check_entry() receives as argument the signature of the
collective operation that the thread has reached, namely

f_sig.

A. Algorithm Al: Detecting wrong-order sequence of calls
to collective operations

1: On thread i:

2:

3: Initialization

8;.0p < ds;.op < unknown, r_s; < 1, r_ds; < 1

e

2As presented, the algorithm forces synchronization even for non-
synchronizing UPC collective operations. However, if forced synchroniza-
tion is a concern, this can be handled with a queue of states. This will not
change the O(1) behavior.

3UPC-CHECK treats non-synchronizing collective operations as syn-
chronizing operations because the UPC 1.2 specification says that ”Some
implementations may include unspecified synchronization between threads
within collective operations” (footnote; page 9).

5:
6: {Function definition of check_entry(£_sig):}
7: if THREADS =1 then

8: Exit check.

9: else

10: Acquire L[]

11: s; + f_sig

122 r_s; <0

13: if ds;.op # unknown then

14:

15: if ds; Z s; then

16: Print error and call global exit function.
17: end if

18: r_s; <1

19: r_ds; < 1

20: ds;.op < unknown

21: end if

22: Release L]i]
23: Wait until r_ds; =1
24: Acquire L[j]

25:

26: if s;.0p = unknown then
27:

28: ds; < s;

29: r_ds; <0

30: else

31: if S % s; then

32: Print error and call global exit function
33: end if

34: r_s; <1

35: end if

36: Release L[j]

37: end if

38:

39: {Function definition of check_exit():}
40: Wait until r_s; = 1

41: Acquire L[i]

42: s;.0p < unknown

43: Release L]

44:
45: {Function definition of check_final():}

46: Acquire L][i]

47: if ds;.op # unknown then

48: Print error and call global exit function.
49: end if

50: s;.0p < end_of_execution

51: Release L][i]

52:

B. Detecting deadlock errors involving upc_notify and
upc_wait operations

The compound statement {upc_notify; upc_wait} forms a
split barrier in UPC. The UPC specification requires that
firstly, there should be a strictly alternating sequence of

upc_notify and upc_wait calls, starting with a upc_notify
call and ending with a upc_wait call. Secondly, there can
be no collective operation between a upc_notify and its
corresponding upc_wait call. These conditions are checked
using a private binary flag on each thread which is set
when a upc_notify statement is encountered and reset when
a upc_wait statement is encountered. This binary flag is
initially reset. If any collective operation other than upc_wait
is encountered when the flag is set, then there must be an
error. Similarly, if a upc_wait statement is encountered when
the flag is reset, then there must be an error. Finally, if the
execution ends, while the flag is set, then there must be
an error. These checks are performed along with the above
algorithm and do not require any communication between
threads. Also modifying and checking private flags is an
operation with complexity of O(1).

If all the threads issue the upc_notify statement, then the
next UPC collective operation issued on all the threads must
be a upc_wait statement. Therefore algorithm A1 working
in unison with the above check needs to only verify the
correct ordering of upc_notify across all threads. The correct
ordering of the upc_wait statements across all threads is
automatically guaranteed with the above mentioned checks.
This is reflected in Algorithm A2.

C. Proof of Correctness

Using the same relation between thread ¢ and thread 7,
i.e. thread ¢ is the left neighbor of thread j, the proof of
correctness is structured as follows. Firstly, it is proved
that the algorithm is free of deadlocks and livelocks. Then
Lemma 3.1 is used to prove that the left neighbor of any
thread j does not reassign ds; before thread j can compare
s; with ds;. Lemma 3.2 proves that the right neighbor
of any thread 4, does not reassign s; before thread 7 can
compare s; with s;. Using Lemma 3.1 and Lemma 3.2
it is proven that for any two neighboring threads ¢ and
j, signature of C'(n,j) is compared to the signature of
C(n,i). Finally, using Lemma 3.3 the correctness of the
algorithm is proven by showing that : 1) no error message
is issued if all the threads have reached the same collective
operation with the same signature and 2) an error message
is issued if at least one thread has reached a collective
operation with a signature different from the signature of the
collective operation on any other thread. Case 1 is proved
by Theorem 3.4 and Case 2 is proved by Theorem 3.5.

There is no hold-and-wait condition in algorithm Al,
hence there cannot be any deadlocks in the algorithm. To
show that the algorithm is livelock-free, we show that any
given thread must eventually exit the waits on line 24 and
42. For any thread 4 reaching its n** collective operation
C(n,1i), thread ¢ can wait at line 24 if thread ¢ itself had
set 7_ds; to 0 on line 30 on reaching C'(n — 1,4). This is
possible only if thread ¢ found that s;.op = unknown on
line 27, i.e. thread j is not executing an UPC collective

operation. Eventually thread j either reaches the end of
execution or a UPC collective operation. In the former case,
a deadlock condition is detected, an error message is issued
and the application exits. In the second case, thread j finds
conditional statement on line 14 to be true and sets r_ds; to
1 on line 20. Since only thread ¢ can set r_ds; to 0 again,
thread ¢ would definitely exit the wait on line 24. Similarly,
for thread j to be waiting at line 42 after executing C'(n, j),
it must not have set r_s; to 1 at line 19. This means that
ds;.op must be equal to unknown at line 14, implying that
thread ¢ has still not executed line 29 and hence line 27 (by
temporal ordering) due to the atomic nature of operations
accorded by L[j]. When thread ¢ finally acquires L[j], the
conditional statement on line 27 must evaluate to false. If
thread 7 has reached a collective operation with a signature
different from that of C(n, j), a deadlock error message is
issued, otherwise r_s; is set to 1. Since only thread j can
set r_s; to 0 again, it must exit the waiting at line 42.

Lemma 3.1: After thread ¢ assigns the signature of
C(n,i) to dsj, then thread ¢ does not reassign ds; before
thread j compares s; with ds;.

Proof: This situation arises only if thread ¢ has reached
a collective operation first. After thread 7 sets ds; to s;
(which is already set to C'(n,%)) at line 29, it sets r_ds;
to O at line 30. Thread 4 cannot reassign ds; until r_ds; is
set to 1. Only thread j can set r_ds; to 1 after comparing
s; with ds; at line 21. []

Lemma 3.2: After thread j assigns the signature of
C(n,j) to sj, then thread j does not reassign s; before
it is compared with s;.

Proof: After thread j assigns the signature of C(n,j)
to s; at line 13, it sets r_s; to 0. Thread j cannot modify
s; until r_s; is set to 1. If thread ¢ has already reached
the collective operation, then thread j sets r_s; to 1 at line
20 only after comparing s; with ds; at line 17. However,
thread ¢ must have copied the value of s; to ds; at line
29. Alternatively, thread j might have reached the collective
operation first. In this case, thread 7 sets r_s; to 1 at line
36 after comparing s; to s; at line 33. []

Lemma 3.3: For any neighboring threads ¢ and j, the
signature of C'(n, i) is always compared with the signature
of C(n,j).

Proof: This is proved using induction on the number

of the collective operations encountered on threads ¢ and j.

Basis. Consider the case where n equals 1, i.e. the first
collective operation encountered on thread ¢ and thread j.
The signature of C(1,7) is compared with the signature
of C(1,7). If thread ¢ reaches collective operation C(1,1)
first, then it assigns ds; the signature of C(1,¢). Using
Lemma 3.1, thread ¢ cannot reassign ds; until ds; is
compared with s; by thread j on reaching its first collective
operation, C'(1,7). Alternatively, if thread j reaches its
collective operation first, then Lemma 3.2 states that after
thread j assigns the signature of C(1,j) to s;, thread

J cannot reassign s; before it is compared with s;. The
comparison between s; and s; is done by thread i after it
reaches its first collective operation and has assigned s; the
signature of C(1,1%).

Inductive step. If the signature of C(n,i) is compared
with the signature of C'(n, j), then it can be proven that the
signature of C(n + 1,4) is compared with the signature of
C(n+1,7). If thread 7 reaches its next collective operation
C(n+1,1) first, then it assigns ds; the signature of C'(n +
1,4). Using Lemma 3.1, thread ¢ cannot reassign ds; until
ds; is compared with s; by thread j on reaching its next
collective operation, i.e. C'(n+ 1, j). Alternatively, if thread
7 reaches its next collective operation first, then Lemma 3.2
states that after thread j assigns C'(n + 1,j) to s;, thread
J cannot reassign s; before it is compared with s;. The
comparison of s; with s; is done by thread 4 after it reaches
its next collective operation and has asigned s; the signature
of C(n+1,1). [

Using Lemma 3.3, it is proven that for any neighboring
thread pair 4 and j, the signature of n*" collective operation
of thread 7 is compared with the signature of n*" collective
operation of thread j. As j varies fromOto THREADS—-1,
it can be said that when the n'* collective operation is
encountered on any thread, it is checked against the nth
encountered collective operation on every other thread be-
fore proceeding. Thus in the following proofs, we need to
only concentrate on a single (potentially different) collective
operation on each thread. In the following proofs, let the
signature of the collective operation encountered on a thread
k be denoted by Sy. If a state or desired state a;.op is
unknown, then it is denoted as a = U for succinctness.
Then in algorithm A1, after assigning the signature of the
encountered collective operation, i.e. line s; < f_sig, notice
that for thread ::

s; must be S;,

ds; must be either U or S;_1,
s; must be either U or S}, and
ds; must be U.

Theorem 3.4: If all the threads arrive at the same col-
lective operation, and the collective operation has the same
signature on all threads, then Algorithm A1 will not issue
an error message.

Proof: f THREADS is 1, no error message is issued,
so we need to consider only cases of execution when
THREADS > 1. 1f all threads arrive at the same collective
operation with the same signature, then during the checks
after s; < f_sig, is the same for all 7. Let S denote
this common signature. We will prove this theorem by
contradiction. An error message is printed only if:

1) ds; # U and ds; # s; = ds; = S and ds; # S =

S # S (contradiction) or
2) sj;«éUandsj;ési:>sj=Sandsj7éS=>S7éS
(contradiction)
So Theorem 3.4 is proved. [|

Theorem 3.5: If any thread has reached a collective op-
eration with a signature different from the signature of the
collective operation on any other thread, then a deadlock
error message is issued.

Proof: There can be a mismatch in the collective
operation or its signature only if there is more than one
thread.

Since the signatures of the collective operations reached
on every thread are not identical, there must be some thread @
for which S; 2 S;. For these threads 7 and j, the following
procedures are made to be atomic and mutually exclusive
through use of lock L[j]:

e Action I: Thread i checks s;. If s; = U, then thread ¢
executes ds; < s;, else, computes s; 2 s; and issues
an error message if true.

o Action 2: Thread j assigns the signature of the col-
lective operation it has reached to s;. Thread j checks
ds;. If ds; # U, the thread j computes ds; 2 s; and
issues message if true.

There are only two possible cases of execution: either action
1 is followed by action 2 or vice versa.

In the first case, in action 1, thread ¢ finds s; = U is true,
executes ds; <— S; and continues. Then in action 2, thread j
executes s; < 5;, finds that ds; # U and hence computes
ds; % s;. Now, since ds; = S; and s; = S and S; # S;
(by assumption) implies that ds; 2 s; is true. Therefore
thread j issues an error message.

In the second case, in action 2, thread j assigns s; < 5,
finds ds; = U and continues. Before thread 4 initiates action
1 by acquiring L[j], it must have executed s; + S;. If
ds; # U and ds; 2 s;, then an error message is issued
by thread ¢, otherwise it initiates action 1. Thread ¢ finds
s; # U and computes s; 2 s;. Now, since s; = 5; and
s; =S and S; 22 S; (by assumption) implies that s; 2 s;
is true. Therefore thread ¢ issues an error message.

Since the above two cases are exhaustive, an error is
always issued if S; 22 S; and hence Theorem 3.5 is proved.

|

Theorem 3.6: The complexity of the Algorithm A1l is
o).

Proof: There are two parts to this proof.

1) The execution-time overhead for any thread 7 is O(1).
Any thread ¢ computes a fixed number of instructions
before entering and after exiting a collective operation.
It waits for at most two locks L[i] and L[j] each
of which can have a dependency chain containing
only one thread, namely thread ¢ — 1 and thread j
respectively. Thread ¢ synchronizes with only two
threads, i.e. its left neighbor thread ¢+ — 1 and right
neighbor thread j. There is no access to variables or
locks from any other thread. Therefore the execution
time complexity of the algorithm in terms of the
number of threads is O(1).

2) The memory overhead of any thread ¢ is independent
of the number of threads and is constant.

IV. DETECTING DEADLOCKS CREATED BY
HOLD-AND-WAIT DEPENDENCY CHAINS FOR ACQUIRING
LOCKS

In UPC, acquiring a lock with a call to the upc_lock()
function is a blocking operation. In UPC program, deadlocks
involving locks occur when there exists one of the following
conditions:

1) a cycle of hold-and-wait dependencies with at least

two threads, or

2) achain of hold-and-wait dependencies ending in a lock

held by a thread which has completed execution, or

3) achain of hold-and-wait dependencies ending in a lock

held by a thread which is blocked at a synchronizing
collective UPC operation.

Deadlocks caused by the hold-and-wait dependencies can
be detected using a WFG shown in Figure 4. Threads waiting
for a lock are shown using boxes whereas locks are shown
as circles. A dashed arrow from a thread to the lock depicts
that thread is waiting for that lock. A solid arrow from a
lock to a thread shows that thread is holding that lock.

Figure 4. Circular dependencies of threads leading to a deadlock.

Using the same notations for locks, threads, hold and
wait actions, Figure 5 illustrates a chain of hold-and-wait
dependencies. This chain of dependencies will never be
resolved if the lock held by the thread depicted as the
gray box will never be released. This can happen only if
the thread has either completed execution or is blocked
at a synchronizing collective operation which will not be
completed.

(SO O O O—

Figure 5. Chain of hold-and wait dependencies while trying to acquire a
lock leading to a deadlock.

Our algorithm uses a simple edge-chasing method to
detect deadlocks involving locks in UPC programs. Before a

thread w tries to acquire a lock, it checks if the lock is free or
not. If it is free, the thread continues execution. Otherwise,
if the lock is held by thread v, thread w checks s,.op to
check if thread v:

1) is not executing a collective UPC operation or
upc_lock operation (s,.op is unknown), or

2) is waiting to acquire a lock, or

3) has completed execution, or

4) is waiting at a synchronizing collective UPC operation.

If thread v is waiting to acquire a lock, then thread u
continues to check the state of the next thread in the
chain of dependencies. If thread u finally reaches thread
m which is not executing a collective UPC operation or
upc_lock operation, then no deadlock is detected. If
thread v finds itself along the chain dependencies, then it
reports a deadlock condition. Similarly, if thread w finds
thread w which has completed execution at the end of the
chain of dependencies, then it issues an error message.

When the chain of dependencies ends with a thread
waiting at a collective synchronizing operation, the deadlock
detection algorithm needs to identify whether the thread will
finish executing the collective operation or not. Figure 6
illustrates these two cases. Thread u is trying to acquire
a lock in a chain of dependencies ending with thread w.
When thread w checks the s,,.op of thread w, thread w may
(a) not have returned from the n** synchronizing collective
operation Cy(n,w), (b) have returned from the n*”* synchro-
nizing collective operation but has not updated the s,,.0p
in the check_exit() function, (c) have completed executing
check_entry() function for the next synchronizing collec-
tive operation Cs(n + 1,w), or (d) waiting at the (n + 1)*"
synchronizing collective operation Cy(n + 1,w). The n'*
synchronizing collective operation encountered on thread w
must be a valid synchronization operation that all threads
must have called (otherwise the check_entry() function
would have issued an error message). Therefore scenarios
(a) and (b) are not deadlock conditions, while (c¢) and (d)
are. To identify and differentiate between these scenarios, a
binary shared variable sync_phasey is introduced for each
thread k. Initially sync_phasey is set to O for all threads.
At the beginning of each check_entry() function on thread
k, the value sync_phasey is toggled. Thread u can now
identify the scenarios by just comparing sync_phase, and
sync_phase,,. If they match (are in-phase), then it is either
scenario (a) or (b) and hence no deadlock error message
is issued. If they do not match (are out-of-phase), then it is
either scenario (c) or (d) and hence a deadlock error message
is issued.

A. The complete deadlock detection algorithm

The complete algorithm to detect deadlocks created by
errors in collective operations and hold-and-wait depen-
dency chains for acquiring locks is presented below. The

Figure 6. Possible scenarios when detecting deadlocks involving chain of
hold-and wait dependencies. Scenario (a) or (b) is not a deadlock condition,

Threadu Thread w

1
Check_ | sync_phase, =0
entrv()

Check_
exit()
1

v

while scenario (c¢) or (d) is.

check_entry() and check_exit() functions receive two ar-
1) the signature of the UPC operation that the
thread has reached, namely f_sig and 2) the pointer L_ptr.
L_ptr points to the lock which the thread is trying to
acquire or release if the thread has reached a upc_lock,

guments:

upc_lock_attempt or upc_unlock statement.
Algorithm A2.

BAEE

Y *® 2

11:
12:
13:
14:
15:
16:

-

17:
18:
19:
20:
21:
22:
23:
24:

On thread ::

Initialization
Create empty list of acquired and requested locks

5;.0p < ds;.op < unknown, r_s; < 1, r_ds; + 1,

(sync_phase; < 0)

{Function definition of check_entry(f_sig, L_ptr):}
Acquire L[i]
s; < f_sig
Release L]
if f_sig.op = at_upc_wait_statement then
Exit check
else if f_sig.op = at_upc_lock_operation then
Acquire c_L
Check status of L,tr
if L_ptr is held by this thread
or is part of a cycle
or chain of dependencies then
Print suitable error and call global exit
else
Update list of requested locks
Release ¢ _L
Exit check
end if
else if f_sig.op = at_upc_unlock_operation then
if L_ptr is not held by this thread then

25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:

37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:

59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:

Print suitable error and call global exit.
else
Update list of acquired locks
Exit check
end if
else
{Thread must have reached a collective operation}
if THREADS =1 then
Exit check.
end if
Acquire c_L
if this thread holds locks which are in the list of
requested locks then
Print suitable error and call global exit.
end if
Release c_L
Acquire Li]
r_s; <0
if this is a synchronizing collective operation then
sync_phase; < (sync_phase; + 1)%2
end if
if ds;.op # unknown then
if dSi % S; then
Print error and call global exit function.
end if
r_s; <1
r_ds; <1
ds;.op < unknown
end if
Release lock L[i]
Wait until r_ds; = 1
Acquire lock L[j]
if s;.0p = unknown then
de — S;
r_ds; <0
else
if s; 2 s; then
Print error and call global exit function
end if
r_s; <1
end if
Release lock L[j]
end if

{Function definition of check_exit(f_sig, L_ptr):}

Wait until »_s;, =1

Acquire L[i]

s; < unknown

Release L]i]

if f_sig.op = at_upc_lock_operation then
Acquire c_L
Remove L_ptr from the list of requested locks
Add L_ptr to the list of acquired locks
Release c_L

78: Continue execution.

79: else if f_sig.op = at_upc_lock_attempt_operation
then

80: if L_ptr was achieved then

81: Acquire c_L

82: Remove L_ptr from the list of requested locks
83: Add L_ptr to the list of acquired locks

84: Release ¢ _L

85: end if

86: Continue execution.

87: else

88: Continue execution.

89: end if

90:

91: {Function definition of check_final():}

92: Acquire L[i]

93: s; «+ end_of_execution

94: if ds;.op # unknown then

95: Print error and call global exit function.

96: end if

97: Release L[]

98: Acquire c_L

99: if this thread holds locks which are in the list of
requested locks then

100: Print suitable error and call global exit.

101: end if

102: if this thread is still holding locks then

103: Print suitable warning

104: end if

105: Release c_L

106:

Checking for dependency chains and cycles adds only a
constant amount of time overhead for each thread in the
chain or cycle. This means that the overhead is O(T) where
T is the number of threads in the dependency chain.

V. EXPERIMENTAL VERIFICATION OF SCALABILITY

This deadlock detection algorithm has been implemented
in the UPC-CHECK tool [4]. UPC-CHECK was used to
experimentally verify the scalability of this algorithm on a
Cray XE6 machine running the CLE 4.1 operating system.
Each node has two 16-core Interlagos processors. Since we
are interested in the verification of scalability, the authors
measured the overhead of our deadlock detection method
for 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096
and 8192 threads. The verification of scalability was carried
out by first measuring the overhead incurred when calling a
UPC collective operation and then measuring the overhead
when running the CG and IS UPC NAS Parallel Benchmarks
(NPB) [21]. The Cray C 8.0.4 compiler was used with the
—hupc option. To pin processes and memory the aprun
command was used with the following options: —ss -cc
cpu.

The authors first measured the overhead of checking for
deadlocks involving the upc_all_broadcast operation
with a message consisting of one 4 byte integer. Since
deadlock checking is independent of the message size, the
small message size was used so that the checking overhead
could be easily measured. To measure the time accurately,
10,000 calls to upc_all_broadcast were timed and an
average reported.

time (tl);
for (i = 0; 1 < 10000; i++)
{
upc_all_broadcast;
}
time {t2};

bcast_time = (t2 - t1)/10000;

Overhead times ranged from 76 to 123 microseconds for
multiple nodes, i.e. 64, 128, 256, 512, 1024, 2048, 4096 and
8192 threads. When replacing upc_all_broadcast with
upc_all_gather_all, overhead times ranged from 73
to 119 microseconds. In both cases, a slight increase is
observed as we increase the number of threads. The authors
attribute this to the fact that, in general, not all pairs
of UPC threads can be mapped to physical processors
for which the communication between UPC threads ¢ and
(i + DYATHREADS is the same for all ¢. The maximal
communication time for optimally placed UPC threads still
grows slowly as the total number of UPC threads grows.
The deviation from constant time in the above experiment
is only a factor of 1.5 for 128 times as many UPC threads.

UPC-CHECK was tested for correctness using 150 tests
from the UPC RTED test suite [6]. Each test contains a
single deadlock. For all the tests, UPC-CHECK detects the
error, prevents the deadlock from happening and exits after
reporting the error correctly [4]. Since these tests are very
small, the observed overhead was so small that we could not
measure them accurately.

Timing results for the UPC NPB CG and IS benchmarks
are presented in Tables I and II using 2, 4, 8, 16, 32, 64,
128, and 256 threads. Timings using more than 256 threads
could not be obtained since these benchmarks are written in
a way that prevents them from being run with more than 256
threads. These results also demonstrate the scalability of the
deadlock detection algorithm presented in this paper. Timing
data for the class B CG benchmark using 256 threads could
not be obtained since the problem size is too small to be
run with 256 threads.

VI. CONCLUSION

In this paper, a new distributed and scalable deadlock
detection algorithm for UPC collective operations is pre-
sented. The algorithm has been proven to be correct and to
have a run-time complexity of O(1). This algorithm has been
extended to detect deadlocks involving locks with a run-time

Class B Class C
Number| Without| With Overhead|| Without| With Overhead
of checks | checks checks | checks
threads
2 77.2 77.6 0.4 211.2 211.8 0.6
4 41.4 41.7 0.3 112.7 112.8 0.1
8 28.1 28.7 0.6 73.9 74.2 0.3
16 15.3 16.0 0.6 394 40.0 0.6
32 8.6 9.5 0.9 21.1 22.1 0.9
64 5.5 6.6 1.1 13.1 14.0 1.0
128 33 4.7 1.3 8.3 9.7 14
256 NA NA NA 5.6 7.2 1.6

Table 1
TIME IN SECONDS OF THE UPC NPB-CG BENCHMARK WITH AND
WITHOUT DEADLOCK CHECKING

Class B Class C
Number| Without| With Overhead|| Without| With Overhead
of checks | checks checks | checks
threads
2 4.56 4.59 0.03 20.00 20.11 0.11
4 2.18 2.18 0.00 9.50 9.52 0.01
8 1.34 1.34 0.00 5.28 5.28 0.00
16 0.79 0.79 0.00 3.46 3.46 0.00
32 0.42 0.43 0.01 1.89 1.89 0.00
64 0.29 0.30 0.01 1.30 1.31 0.01
128 0.21 0.22 0.01 0.82 0.82 0.00
256 0.26 0.27 0.01 0.57 0.57 0.00

Table 1T

TIME IN SECONDS OF THE UPC NPB-IS BENCHMARK WITH AND
WITHOUT DEADLOCK CHECKING

complexity of O(T), T is the number of threads involved in
the deadlock. The extended algorithm utilizes a distributed
technique to check deadlock errors in collective operations
and uses a distributed wait-for-graph for detecting deadlocks
involving locks. The algorithm has been implemented in
the run-time error detection tool UPC-CHECK and tested
with over 150 functionality test cases. The scalability of
this deadlock detection algorithm has been experimentally
verified using up to 8192 threads.

In UPC-CHECK, the algorithm is implemented through
automatic instrumentation of the application via a source-
to-source translator created using the ROSE toolkit [22].
Alternatively, such error detection capability may be added
during the precompilation step of a UPC compiler. This
capability could be enabled using a compiler option and
may be used during the entire debugging process as the
observed memory and execution time overhead even for a
large number of threads is quite low.

ACKNOWLEDGMENT

This work was supported by the United States Department
of Defense & used resources of the Extreme Scale Systems
Center at Oak Ridge National Laboratory.

REFERENCES

[1] T. El-Ghazawi, W. Carlson, T. Sterling, and K. Yelick,
UPC: Distributed Shared Memory Programming. Wiley-
Interscience, 2003.

[2] “Unified Parallel C (Wikipedia).” [Online]. Available:
http://en.wikipedia.org/wiki/Unified_Parallel_C

[3] K. Yelick, D. Bonachea, W.-Y. Chen, P. Colella, K. Datta,
J. Duell, S. L. Graham, P. Hargrove, P. Hilfinger,
P. Husbands, C. Iancu, A. Kamil, R. Nishtala, J. Su,
M. Welcome, and T. Wen, “Productivity and performance
using partitioned global address space languages,” in
Proceedings of the 2007 international workshop on Parallel
symbolic computation, ser. PASCO °07. New York,
NY, USA: ACM, 2007, pp. 24-32. [Online]. Available:
http://doi.acm.org/10.1145/1278177.1278183

[4] J. Coyle, I. Roy, M. Kraeva, and G. Luecke, “UPC-CHECK:
a scalable tool for detecting run-time errors in Unified
Parallel C,” Computer Science - Research and Development,
pp- 1-7, 10.1007/s00450-012-0214-4. [Online]. Available:
http://dx.doi.org/10.1007/s00450-012-0214-4

[S] A. Ebnenasir, “UPC-SPIN: A Framework for the
Model Checking of UPC Programs,” in Proceed-
ings of Fifth Conference on Partitioned Global
Address Space Programming Models, ser. PGAS ’11,
2011. [Online]. Available: http://pgasl1.rice.edu/papers/
Ebnenasir-UPC-Model-Checking-PGAS11.pdf

[6] J. Coyle, J. Hoekstra, M. Kraeva, G. R. Luecke, E. Kleiman,
V. Srinivas, A. Tripathi, O. Weiss, A. Wehe, Y. Xu, and
M. Yahya, “UPC run-time error detection test suite,” 2008.
[Online]. Available: http://rted.public.iastate.edu/UPC/

[7] J. Traff and J. Worringen, ‘“Verifying collective MPI
calls,” in Recent Advances in Parallel Virtual Machine and
Message Passing Interface, ser. Lecture Notes in Computer
Science, D. Kranzlmiiller, P. Kacsuk, and J. Dongarra,
Eds. Springer Berlin / Heidelberg, 2004, vol. 3241, pp.
95-107, 10.1007/978-3-540-30218-6_11. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-30218-6_11

[8] C. Falzone, A. Chan, E. Lusk, and W. Gropp, “Collective
error detection for MPI collective operations,” in Recent
Advances in Parallel Virtual Machine and Message Passing
Interface, ser. Lecture Notes in Computer Science,
B. Di Martino, D. Kranzlmller, and J. Dongarra,
Eds. Springer Berlin / Heidelberg, 2005, vol. 3666,
pp.- 138-147, 10.1007/11557265_21. [Online]. Available:
http://dx.doi.org/10.1007/11557265_21

[9] W. Gropp, “Runtime checking of datatype signatures in
MPL,” in Recent Advances in Parallel Virtual Machine and
Message Passing Interface, ser. Lecture Notes in Computer
Science, J. Dongarra, P. Kacsuk, and N. Podhorszki,
Eds. Springer Berlin / Heidelberg, 2000, vol. 1908, pp.
160-167, 10.1007/3-540-45255-9_24. [Online]. Available:
http://dx.doi.org/10.1007/3-540-45255-9_24

(10]

(11]

[12]

[13]

(14]

[15]

(16]

(17]

(18]

S. Siegel, “Verifying parallel programs with MPI-Spin,”
in Recent Advances in Parallel Virtual Machine and
Message Passing Interface, ser. Lecture Notes in Computer
Science, F. Cappello, T. Herault, and J. Dongarra, Eds.
Springer Berlin / Heidelberg, 2007, vol. 4757, pp. 13—
14, 10.1007/978-3-540-75416-9_8. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-540-75416-9_8

S. S. Vakkalanka, S. Sharma, G. Gopalakrishnan, and R. M.
Kirby, “ISP: a tool for model checking mpi programs,”
in Proceedings of the 13th ACM SIGPLAN Symposium
on Principles and practice of parallel programming, ser.
PPoPP ’08. New York, NY, USA: ACM, 2008, pp.
285-286. [Online]. Available: http://doi.acm.org/10.1145/
1345206.1345258

J. Yang, T. Chen, M. Wu, Z. Xu, X. Liu, H. Lin,
M. Yang, F. Long, L. Zhang, and L. Zhou, “MODIST:
transparent model checking of unmodified distributed
systems,” in Proceedings of the 6th USENIX symposium
on Networked systems design and implementation, ser.
NSDI'09. Berkeley, CA, USA: USENIX Association, 2009,
pp- 213-228. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1558977.1558992

S. Vakkalanka, G. Gopalakrishnan, and R. M. Kirby,
“Dynamic verification of MPI programs with reductions
in presence of split operations and relaxed orderings,”
in Proceedings of the 20th international conference on
Computer Aided Verification, ser. CAV ’08. Berlin,
Heidelberg: Springer-Verlag, 2008, pp. 66-79. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-70545-1_9

A. Vo, S. Aananthakrishnan, G. Gopalakrishnan, B. de Supin-
ski, M. Schulz, and G. Bronevetsky, “A scalable and dis-
tributed dynamic formal verifier for MPI programs,” in High
Performance Computing, Networking, Storage and Analysis
(SC), 2010 International Conference for, nov. 2010, pp. 1
-10.

B. Krammer, M. Miiller, and M. Resch, “MPI application
development using the analysis tool MARMOT,” in
Computational ~ Science - ICCS 2004, ser. Lecture
Notes in Computer Science, M. Bubak, G. van
Albada, P. Sloot, and J. Dongarra, Eds. Springer
Berlin / Heidelberg, 2004, vol. 3038, pp. 464-
471, 10.1007/978-3-540-24688-6_61. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-24688-6_61

G. R. Luecke, Y. Zou, J. Coyle, J. Hoekstra, and M. Kraeva,
“Deadlock detection in MPI programs,” Concurrency and
Computation: Practice and Experience, vol. 14, no. 11,
pp. 911-932, 2002. [Online]. Available: http://dx.doi.org/10.
1002/cpe.701

J. S. Vetter and B. R. de Supinski, “Dynamic software
testing of MPI applications with Umpire,” in Proceedings
of the 2000 ACM/IEEE conference on Supercomputing
(CDROM), ser. Supercomputing ’00. Washington, DC,
USA: IEEE Computer Society, 2000. [Online]. Available:
http://dl.acm.org/citation.cfm?id=370049.370462

T. Hilbrich, B. R. de Supinski, M. Schulz, and M. S. Miiller,
“A graph based approach for MPI deadlock detection,”
in Proceedings of the 23rd international conference on

[19]

(20]

(21]

(22]

Supercomputing, ser. ICS °09. New York, NY, USA:
ACM, 2009, pp. 296-305. [Online]. Available: http:
//doi.acm.org/10.1145/1542275.1542319

T. Hilbrich, M. Schulz, B. R. Supinski, and M. S. Miiller,
“MUST: A scalable approach to runtime error detection in
mpi programs,” in Tools for High Performance Computing
2009, M. S. Miiller, M. M. Resch, A. Schulz, and
W. E. Nagel, Eds. Springer Berlin Heidelberg, 2010, pp.
53-66, 10.1007/978-3-642-11261-4_5. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-11261-4\ _5

The UPC Consortium, “UPC Language Specifications
(v1.2),” 2005. [Online]. Available: http://www.gwu.edu/
~upc/docs/upc_specs_1.2.pdf

“UPC NAS Parallel Benchmarks.” [Online]. Available:

http://threads.hpcl.gwu.edu/sites/npb-upc

D. J. Quinlan and et al., “ROSE compiler project.” [Online].
Available: http://www.rosecompiler.org/

