
The Importance of Run-time Error Detection

Glenn R. Luecke
 1
, James Coyle

 1
, James Hoekstra

 1
, Marina Kraeva

 1
, Ying Xu,

Mi-Young Park, Elizabeth Kleiman, Olga Weiss, Andre Wehe, Melissa Yahya,

1 Iowa State University’s High Performance Computing Group,

Iowa State University, Ames, Iowa 50011, USA

{grl, jjc, hoekstra, kraeva}@iastate.edu

Abstract. The ability of system software to detect and issue error messages that

help programmers quickly fix serial and parallel run-time errors is an important

productivity criterion for developing and maintaining application programs.

Over ten thousand run-time error tests and a run-time error detection (RTED)

evaluation tool has been developed for the automatic evaluation of run-time

error detection capabilities for serial errors and for parallel errors in MPI,

OpenMP and UPC programs. Evaluation results, tests and the RTED

evaluation tool are freely available at http://rted.public.iastate.edu. Many

compilers, tools and run-time systems scored poorly on these tests. The authors

make recommendations for providing better RTED in the future.

Keywords: Run-time error detection, Fortran, C, C++, MPI, OpenMP, UPC.

1 Introduction

Debugging serial and parallel programs can be very time consuming. The typical

debugging process is: (1) first compile and correct all compile-time errors, (2) next

run and correct the run-time errors issued by the run-time system and (3) then use a

debugger and/or print statements to find and correct the rest of the errors, i.e. the

errors not detected at run-time and logical errors. Compile-time errors can normally

be corrected quickly since compilers usually issue good error messages. Similarly,

usually run-time errors can be corrected quickly without a debugger and print

statements when the run-time system correctly diagnoses the error and issues a good

error message. However, correcting the other errors can be very time consuming. If a

run-time system does not issue a good error message, then one is forced to use a

debugger and/or print statements to find and correct the error. Notice that print

statements and debuggers only give values of variables and it is up to the person

debugging the program to know if these values are correct or not. Thus, high quality

run-time error detection with high quality run-time error messages is critical to

providing a productive computing environment. In addition, high quality run-time

error detection would be especially valuable for petascale computing when

conventional parallel debuggers may not scale to hundreds of thousands of cores.

The productivity enhancement from having excellent run-time error detection

(RTED) depends on many factors; e.g., the type of error, the length and complexity of

the program, the experience and intelligence of the person trying debug the program

mailto:%7D@iastate.
http://rted.public.iastate.edul/

as well as this person’s knowledge of the program. A few years ago, an expert in

parallel programming and professor of physics at Iowa State University (ISU) spent

nine months trying to find what was causing the physics code that he wrote to abort

after several days of execution. He then asked ISU’s HPC Group to help find the

error in his 6,000 line, Fortran-MPI application code. The code was run using the

MPI-CHECK tool [12]. The error was detected and a good error message was issued.

With this information, the professor was able to correct the error quickly. This

physics code is now running on machines all over the world and is being run regularly

with 30,000 processors. Without a run-time error detection tool, the error might have

never been found.

With funding from the US Department of Defense, from DARPA’s High

Productivity Computing Initiative and from the Extreme Scale System Center at Oak

Ridge National Laboratory, extensive run-time error tests have been developed from

2003 through 2008 by Iowa State University’s High Performance Computing Group

for evaluating run-time error detection capabilities for

 serial errors in programs written in Fortran, C and C++ (2695 tests)

 parallel MPI errors in programs written in Fortran, C and C++ (1942

tests)

 parallel OpenMP errors in programs written in Fortran, C and C++ (3307

tests)

 parallel programs written in Unified Parallel C (2247 tests).

More than ten thousand run-time error tests have been written for this project. A

run-time error detection (RTED) evaluation tool has been developed for running these

tests and for automatically evaluating the run-time error messages generated by

assigning a score from 0 to 5 based on the usefulness of the message to help fix the

error quickly. The tool then automatically averages these scores over the different

error categories and reports the results. These tests and the RTED evaluation tool

provide an easy way to evaluate and compare run-time error detection capabilities

provided by different vendors and could be used as part of a computer procurement

process. In addition, vendors could use these tests, recommended error messages and

the RTED evaluation tool to evaluate and improve the run-time error detection

capabilities of their compilers, tools and run-time systems.

Current test results, tests, desired output files, and the RTED evaluation tool are

freely available at http://rted.public.iastate.edu. As new compilers, tools and run-time

systems become available, vendors are encouraged to send the results using the new

system software to rted.project@iastate.edu so they can be posted on this web site.

2 Background

There are many commercial and public domain software systems to detect and

provide information to help programmers fix serial run-time errors. The survey in [1]

found that the commercial products, Insure++ and Purify performed by far the best of

all software systems evaluated. At the time of the study, Insure++ was considered

better than Purify but both products did an excellent job in detecting serial run-time

errors in C and C++ and provided excellent information for the quick fixing of the

http://rted.public.iastate.edul/

errors. Unfortunately, neither Insure++ nor Purify find run-time errors for Fortran.

Sun’s HPC ClusterTools [2] contains the bcheck tool for finding serial run-time errors

in Fortran, C and C++ programs.

The Message Passing Interface, MPI, is the standard message passing library used

for writing parallel scientific programs for distributed memory parallel computers [3,

4]. OpenMP is often used for writing parallel scientific programs for shared memory

parallel computers [5, 6]. Since most of today’s parallel computers are a collection of

shared memory compute nodes interconnected via a communication network, some

application programs are written using both MPI and OpenMP and some using only

MPI. Unified Parallel C [7, 8] is an extension of C for parallel execution on shared or

distributed memory parallel machines. Some scientific applications are written

entirely in UPC instead of MPI and/or OpenMP.

There are several tools to aid in the debugging of MPI programs. The Umpire tool

[9, 10] was initially developed by Jeffrey Vetter and Bronis de Supinski in 2000 at

Lawrence Livermore National Laboratory. The High Performance Computing Center

(HLRS) in Stuttgart and the Technische Universitaet Dresden (ZIH) in Germany have

developed the MARMOT tool [11] for finding MPI run-time errors in Fortran and C

programs. Iowa State University’s High Performance Computing Group has

developed MPI-CHECK for Fortran [12]. Intel’s message checker [13] is a tool that

has been developed to find MPI run-time errors in Fortran, C and C++ programs.

Intel has integrated message checker into their trace analyzer and collector 2.7 tools

within their Cluster Toolkit.

Intel’s thread checker [14] and Sun Microsystems’ thread analyzer [2] are tools for

debugging OpenMP run-time errors. The authors are not aware of any run-time error

detection tools for Unified Parallel C (UPC).

3 Methodology

This section summarizes the methodology used to develop the run-time error tests and

the software for the automatic running of tests and for the automatic evaluation of the

error messages. For each run-time error, test programs have been written to

determine if the error can be detected and a quality message generated (each test

program contains one and only one run-time error). Tests were written so that the

information needed to detect the error is not available at compile-time. For each test a

file with a recommended error message was created that contains the error name, the

line number and the file name where the error occurred along with any additional

information that would assist a programmer to find and correct the error.

The following are the run-time error categories used for the development of the

serial tests for Fortran, C and C++: array index out of bounds, uninitialized variables,

subprogram call errors, pointer errors, floating point errors, string errors, allocation

and deallocation errors, memory leaks, input and output errors, Fortran 95 specific

errors, Fortran array conformance errors and C99 specific errors.

The following are the run-time error categories used for the development of the

MPI tests for Fortran, C and C++: buffer out of bounds, buffer overlap, data type

errors, rank errors, other argument errors, wrong order of MPI calls, negative message

length, deadlocks, race conditions, implementation dependent errors (potential

deadlocks, race conditions and noncontiguous dynamic allocation of message buffers

in C).

The run-time error categories used for the Fortran, C and C++ OpenMP tests are:

deadlocks, race conditions, environment and clause errors, wrong order of OpenMP

directives, uninitialized shared and private variables, wrong usage of OpenMP

runtime library routines and implementation dependent errors (i.e. behavior is either

undefined or said to be implementation dependent by the OpenMP API).

The run-time error categories used for UPC are: out-of-bounds shared memory

access using indices, out-of-bounds shared memory access using pointers, out-of-

bounds shared memory access in UPC functions, argument errors in UPC functions,

wrong order of UPC calls, uninitialized variables, deadlocks, race conditions, memory

related errors, undefined UPC operations, warnings. The “warnings” category

includes tests where programmers should be warned of likely errors. For example, it

makes no sense to have the “nelems” argument in reduction functions be zero even

though the UPC specification allows this, so some tests have nelems = 0 and the

RTED evaluation tool checks whether good warning messages are produced.

The RTED evaluation tool mentioned in Section 1 is a collection of scripts for the

automatic running of tests, comparing actual messages with expected messages and

then assigning a score of 0, 1, 2, 3, 4 or 5 to the message generated for each test:

 A score of 5 is given for a detailed error message that allows for the quick

fixing of the error. For example, when there is an out-of-bounds access of

the second dimension of array B, instead of issuing a message “out-of-

bounds access in array B in line 1735 of file prog.f90”, the message could

mention that the problem occurred in the second dimension of B, the

accessed value was 17 and the allocated range was from 1 to 16 and that

B was allocated in line 923 of prog.f90.

 A score of 4 is given for error messages with more information than a

score of 3 and less than 5. This is tailored for each test.

 A score of 3 is given for error messages with the correct error name, line

number and the name of the file where the error occurred.

 A score of 2 is given for error messages with the correct error name and

line number where error occurred but not the file name where the error

occurred.

 A score of 1 is given for error messages with the correct error name.

 A score of 0 is given when the error was not detected.

Different compilers, tools and run-time systems may issue different messages (with

different error names) for the same run-time error. For example, the out-of-bounds

access is named as “array out-of-bounds error” on one system, “array index error” on

another system and “index out-of-bounds error” on a third system. The RTED

evaluation tool has a list of synonymous phrases for each error so that equivalent error

messages will be evaluated appropriately. Thus, for the RTED tool to accurately

evaluate an error message, the error name must be listed as one of the RTED

synonymous phrases. Error messages are evaluated as follows:

 For each test and score a scoring script was created.

 A synonym file of acceptable error names was created.

 Error messages are reduced to a canonical form for easy comparison with

the recommended error messages by first changing all text to lower case

and then replacing selected phrases with standard phrases. Blanks, hex

addresses, and integers longer than three digits are removed to reduce

false matches.

 Scoring scripts are applied to the canonical form of each error message for

automatic evaluation.

4 Results

This section contains the results of running all the tests using the software

environments/machines that were available to us. Tests were run using all available

compiler run-time error detection options. For each compiler, we searched the man

pages and selected all debugging options for this evaluation. It would be helpful if

compilers had a general “--debug” option that would turn on all debugging options.

Results on the web site, http://rted.public.iastate.edu, present scores for each category

of run-time errors. Due to space limitations, we cannot present all of the RTED results

and only present average scores in most cases. Some vendors score well in some

error categories and poorly in others. When taking averages, this information may be

hidden, so the reader is encouraged to view the complete results posted on the web

site.

There are 1552 serial execution Fortran tests, 716 serial execution C tests and 1143

serial execution C++ tests. (We ran the 716 C tests and 427 C++ specific tests for our

1143 C++ tests.) Table 1 presents the average scores when running these tests on

different machines/software environments.

Notice that for the serial C and C++ tests, Insure++ is the only one that scored

well. The Cray X1 and the NAG Fortran compilers both scored well.

Table 1. Average serial execution results.

Compiler/tool Fortran C C++

Cray XT4 CNL, Pathscale compilers 0.62 0.08 0.06

Cray X2 CNL, Cray compilers 2.07 0.39 0.47

Cray X1 Unicos/mp, Cray compilers 2.49 0.47 0.53

Cray XT4 CNL, PGI compilers 1.37 0.43 0.28

IBM AIX, XLF/XLC compilers 1.51 0.12 0.10

RedHat Linux, NAGWare Fortran 95 2.36 NA NA

RedHat Linux, Intel compilers 1.34 0.00 0.00

RedHat Linux, Intel compilers with Insure++ NA 2.75 2.97

SUN Solaris, Sun compilers with bcheck 2.11 1.08 1.29

SUN Solaris, Sun compilers 1.79 0.00 0.00

GNU v4.1.2 compilers 1.19 0.08 0.06

There are 744 MPI Fortran tests, 723 MPI C tests and 1198 MPI C++ tests. Table

2 presents the average scores when running the MPI 2.0 tests on different

machines/software environments. The RTED web site contains the scores for both

MPI 1.1 and for MPI 2.0, but only the MPI 2.0 results are presented in this paper. If

http://rted.public.iastate.edu/

an MPI implementation does not support the full MPI 2.0 standard, there is no penalty

when running the MPI 2.0 tests. This is because the RTED evaluation tool only

assigns a score to those tests that compile and link successfully and average scores are

calculated on the reduced set of tests. Notice that MPI-CHECK and Marmot scored

better than the others. Intel’s trace analyzer was not able to identify the line number

where the error occurred so the best possible score for each test would be 1.0.

Table 2. Average MPI 2.0 results.

Compiler/MPI Library/tool Fortran C C++

Cray X1 Unicos/mp, Cray compilers 0.64 0.75 0.82

Cray XT4 CNL, MPICH2, PGI compilers 0.24 0.32 0.31

IBM AIX, XLF/XLC compilers 0.40 0.46 0.43

RedHat Linux, OpenMPI, Pathscale 0.25 0.32 0.30

RedHat Linux, OpenMPI, Pathscale with MPI-CHECK 1.32 NA NA

RedHat Linux, OpenMPI, Pathscale with Marmot 1.27 1.35 0.83

RedHat Linux, MPICH-gm, Intel compilers 0.25 0.46 0.43

Suse, MPICH 1.2, Intel compilers with Trace Analyzer 0.47 0.50 0.48

SUN Solaris, MPICH2, Sun compilers 0.29 0.34 0.32

Since MPI is the most commonly used method of parallelization, table 3 presents

the detailed MPI 2.0 results for Fortran and for selected compilers, MPI Libraries and

tools. Cray XT results are for the Cray XT4 system, using MPICH2 library and PGI

Fortran compiler. Intel TA results were obtained on a Xeon cluster running MPICH

1.2 using Intel compiler along with the Intel Trace Analyzer and Collector tool.

OpenMPI results are for an Opteron cluster, using OpenMPI library and Pathscale

Fortran compiler. The results in the last two columns were obtained on the same

Opteron cluster, using the MPI-CHECK and Marmot tools.

Table 3. MPI 2.0 Fortran results for each error category.

MPI Error Category Cray

XT

Intel TA OpenMPI MPI-

CHECK

Marmot

Buffer out of bounds 0.01 0.06 0.02 2.13 0.05

Buffer overlap 0.00 0.71 0.05 0.62 0.14

Datatype errors 0.10 0.40 0.20 1.80 0.20

Rank errors 0.54 0.76 0.08 2.81 1.87

Other argument errors 0.22 0.59 0.00 0.30 0.37

Wrong order of MPI calls 0.48 0.69 0.06 0.56 1.48

Negative message length 0.98 0.91 0.08 1.95 1.42

Deadlocks 0.02 0.17 0.00 1.79 2.69

Race conditions 0.00 0.06 0.00 0.09 1.07

Implementation dependent errors 0.04 0.31 0.00 3.18 3.39

AVERAGES 0.24 0.47 0.05 1.52 1.27

The following is one of the Fortran MPI tests that we wrote:

41 program F_C_1_3_1_2_e_M1

43 implicit none

44 include "mpif.h"

46 integer, parameter :: N=5 ! buffer size

48 integer :: arrayA(N), arrayB(N+1), sbuf(N+1)

55 call MPI_INIT(ierror)

56 call MPI_COMM_SIZE(mpi_comm_world, numprocs,

 ierror)

57 call MPI_COMM_RANK(mpi_comm_world, myrank,

 ierror)

65 if(cos(x) > 2.0) then

66 count = N

67 else

68 count = N+1

69 endif

70

71 do i=1,count

72 sbuf(i) = myrank + i

73 enddo

74

75 if(myrank.eq.1) then

76 call MPI_ALLREDUCE(sbuf, arrayA, count,

 MPI_INTEGER, MPI_SUM, mpi_comm_world, ierror)

77 else

78 call MPI_ALLREDUCE(sbuf, arrayB, count,

 MPI_INTEGER, MPI_SUM, mpi_comm_world, ierror)

79 endif

87 call MPI_FINALIZE(ierror)

91 end program F_C_1_3_1_2_e_M1

This program reads the value of x from a file so that its value is not known to the

program at compile time. For this example Pathscale with OpenMPI, Pathscale with

OpenMPI and Marmot, and Intel’s Trace Analyzer and Collector all did not detect the

error and were given a score of zero. MPI-CHECK with the Pathscale compiler and

OpenMPI received a score of 4.0 for producing the following message:

File=/scratch/jjc/F_C_1_3_1_2_e_M1.f90, Line= 76 , Argument= 2] arrayA,

message size exceeds the bounds of this array, please check the message size.

The recommended error message for this test is:

Buffer size exceeded. The value 6 of argument 'count' in 'MPI_ALLREDUCE'

called at line 76 in file 'F_C_1_3_1_2_e_M1.f90' on process 1 exceeds the size

of receive buffer 'arrayA'. 'arrayA' is declared at line 48 in file

'F_C_1_3_1_2_e_M1.f90' with size 5.

There are 2156 OpenMP Fortran tests, 1066 OpenMP C tests, and 1151 OpenMP

C++ tests. (We ran the 1066 C tests and 85 C++ specific tests for our 1151 C++

tests.) There are few C++ specific tests since the OpenMP API has few items that are

C++ specific. Table 4 presents the average scores when running these tests on

different machines/software environments. Notice that Intel’s thread checker and

Sun’s thread analyzer both improved the score, but not by much.

Table 4. Average OpenMP results.

Compiler/tool Fortran C C++

Cray X1 Unicos(mp), Cray compilers 0.32 0.30 0.45

Cray X2 Unicos(mp), Cray compilers 0.23 0.25 0.40

Cray Unicos, PGI compilers 0.17 0.19 0.21

Cray Unicos, GNU compilers 0.20 0.19 0.27

Cray Unicos, Pathscale compilers 0.13 0.18 0.21

IBM AIX, XLF/XLC compilers 0.26 0.23 0.30

RedHat Linux, Pathscale compilers 0.13 0.19 0.24

RedHat Linux, Intel compilers 0.13 0.14 0.20

RedHat Linux, Intel compilers with thread checker 0.42 0.43 0.52

SUN Solaris, Sun compilers 0.02 0.02 0.03

SUN Solaris, Sun compilers with thread analyzer 0.40 0.39 0.40

Table 4 presents the scores when running the 2247 UPC tests using Cray’s,

Berkeley’s, HP’s and GNU’s UPC compilers. The section "Undefined UPC

Operations" contains all situations where the outcome of certain UPC statements is

stated as being undefined by the UPC specification. The UPC “warnings” category is

described in section 3. GNU’s and HP’s UPC do not support UPC IO so these tests

were skipped when using these compilers and scores calculated on the reduced set of

tests. In addition, GNU’s UPC does not support UPC collective utilities so these

tests were also skipped when using GNU’s UPC compiler and scores calculated on

the reduced set of tests. Notice that Cray’s UPC compiler scored better than all the

others in some categories.

Table 5. UPC results for each error category.

UPC Error Category Cray Berkeley HP GNU

Out-of-bounds shared memory access using indices 1.30 0.00 0.03 0.20

Out-of-bounds shared memory access using pointers 1.04 0.00 0.00 0.21

Out-of-bounds shared memory access in UPC calls 0.91 0.00 0.02 0.01

Argument errors in UPC functions 0.38 0.04 0.00 0.00

Wrong order of UPC calls 0.84 0.20 0.53 0.89

Uninitialized variables 0.08 0.02 0.57 0.25

Deadlocks 0.00 0.58 0.36 0.27

Race conditions 0.01 0.00 0.00 0.00

Memory related errors 0.18 0.00 0.16 0.37

Undefined UPC operations 0.19 0.21 0.15 0.41

Warnings (uninitialized shared variables) 0.27 0.00 0.00 0.00

AVERAGES 0.47 0.10 0.17 0.24

5 Recommendations

The ability to detect and issue high quality run-time error messages is critical for

programmer productivity and should be an integral part of providing a productive

environment for the development and maintenance of scientific applications. In this

section, we make recommendations on how this could be accomplished.

Ideally, each vendor should provide high-quality RTED. However, the results of

this study show that this is not the current situation and there are no signs that this will

change. Since JAVA’s language specification includes array bounds checking, we

thought that RTED could be part of the Fortran, C and C++ language specifications as

a first step towards providing high quality RTED. Vendors could then use the RTED

tests developed in the project when implementing RTED. This idea was presented to

the Fortran standards committee. After discussion the idea was rejected. The idea has

not been presented to the C and C++ standards committees.

Since high quality RTED is so important for the productivity of application code

developers, we now recommend the development of high quality RTED tools that are

freely available and support each commonly-used programming paradigm. Funding

for these tools must include not only their development but also ongoing maintenance,

periodic enhancement with better RTED techniques and with programming paradigm

advancements. The following lists the specific programming paradigms we

recommend RTED tools be developed for:

 Serial Fortran, C, C++

 MPI with Fortran, C and C++

 OpenMP with Fortran, C and C++

 UPC

 Co-Array Fortran

Since MPI programs are Fortran, C or C++ programs calling MPI functions, the

MPI tool should be used along with the serial tools for Fortran, C and C++. The

OpenMP tools could be developed from the serial Fortran, C and C++ tools.

Since NVIDIA is providing CUDA for programming for their GPU, we

recommend NVIDIA fund the development and maintenance of RTED tools for

CUDA.

There are three new parallel languages that have been developed as part of

DARPA’s High Productivity Computing Initiative: Chapel developed by Cray,

Fortress developed by Sun Microsystems and Q10 developed by IBM. We

recommend that each of these vendors fund the development and maintenance of a

high quality RTED tool for their own language.

6 Conclusions

The ability of system software to detect errors at run-time and issue error messages

that help programmers quickly fix errors is an important productivity criterion for

developing and maintaining application programs. Over ten thousand run-time error

tests and a run-time error detection (RTED) evaluation tool have been developed for

the automatic evaluation of run-time error detection capabilities for serial errors and

for parallel errors in MPI, OpenMP and UPC programs. Each error message issued

by the run-time system is assigned a score from 0 to 5 based on the usefulness of the

information in the message to help a programmer quickly fix the error. Average

scores over error categories are automatically calculated and reported. All tests and

the RTED evaluation tool are freely available at the RTED web site

http://rted.public.iastate.edu. Many compilers, tools and run-time systems have been

evaluated with results posted on this same web site.
The technology for detecting and reporting many run-time errors is known, but the

results of running these tests show that many of the software environments evaluated

currently do a poor job detecting run-time errors with the following exceptions:

 For the serial tests, Insure++ scored well for C and C++ programs and the

Cray X1 and NAG compilers both scored well for Fortran.

 For the MPI tests, MPI-CHECK and Marmot scored better than the

others.

It is hoped that these tests and recommended error messages will be used to

evaluate and improve the run-time error detection capabilities of compilers, tools and

run-time systems and that these tests will also be used by high performance

computing centers as part of their computer procurement process.

The authors recommend the development of high-quality, public domain RTED

tools to support the programming paradigms commonly used for scientific computing.

Funding for these projects should include not only development but also maintenance,

periodic enhancements with better RTED techniques and support future programming

paradigm enhancements.

Acknowledgments. This work was funded by the US Department of Defense,

DARPA’s High Productivity Computing Initiative and by the Extreme Scale System

Center at Oak Ridge National Laboratory.

References

1. Luecke, G., Coyle, J., Hoekstra, J., Kraeva, M., Li, Y., Taborskaia, O., Wang, Y.: A Survey

of Systems for Detecting Serial Run-time Errors. Concurrency and Computation: Practice

and Experience, vol. 18, pp 1885--1907 (2006)

2. Sun Microsystem’s HPC ClusterTools, http://www.sun.com/software/products/clustertools

3. Snir, M., Otto, S. W., Huss-Lederman, S., Walker, D. W., Dongarra, J.: MPI - The Complete

Reference, The MIT Press (1998)

4. Message Passing Interface Forum, http://www.mpi-forum.org

5. The OpenMP API Specification, http://openmp.org

6. Chapman, B., Jost, G., Van der Pas, R.: Using OpenMP: Portable Shared Memory Parallel

Programming, The MIT Press (2008)

7. Unified Parallel C, http://upc.gwu.edu

8. El-Ghazawi, T., Carlson, W., Sterling, T., Yelick, K.: UPC Distributed Shared Memory

Programming, Wiley-Interscience (2005)

9. Vetter, J.S., De Supinski, B.R.: Dynamic software testing of MPI applications with Umpire,

In: Conference on High Performance Networking and Computing Article 51, Proceedings of

the 2000 ACM/IEEE conference on Supercomputing, Dallas, Texas, United States (2000)

http://rted.public.iastate.edul/
http://openmp.org/

10. Hilbrich, T., Supinski, B., Mueller, M., Schulz, M.: A Graph Based Approach for MPI

Deadlock Detection, In: International Conference on Supercomputing, Yorktown Heights,

NY, USA, pp 296--305 (2009)

11. MARMOT, http://www.hlrs.de/organization/av/amt/research/marmot/publications

12. Luecke, G.R., Chen, H., Coyle, J., Hoekstra, J., Kraeva, Zou, Y.: MPI-CHECK: a Tool for

Checking Fortran 90 MPI Programs. Concurrency and Computation: Practice and

Experience, vol. 15, pp 93--100 (2003)

13. Intel Message Checker, http://www.intel.com/cd/software/products/asmo-

na/eng/227074.htm

14.Intel Thread Checker, http://software.intel.com/en-us/intel-thread-checker/

http://software.intel.com/en-us/intel-thread-checker/

